Many original equipment manufacturers (OEMs) face the choice of whether to license an independent remanufacturer (IR) to remanufacture their used products. In this paper, we develop closed-loop supply chain models with licensed and unlicensed remanufacturing operations to analyze the competition and cooperation between an OEM and an IR. The OEM sells new products and collects used products through trade-ins, while the IR intercepts the OEM's cores to produce remanufactured products and sell them in the same market. We derive optimal decisions for each of the two types of firms in licensed and unlicensed remanufacturing scenarios and identify conditions under which the OEM and the IR would be most likely to cooperate with each other in implementing remanufacturing. The results show although it is beneficial for an OEM to license an IR to remanufacture its cores, it is not always necessary for an IR to accept OEM's authorization. Moreover, we contrast the result for licensed remanufacturing scenario in the decentralized system with that in the centrally coordinated system to quantify potential inefficiency resulting from decentralization of decision making.
In order to address the lack of collaborative decision and failure to notice the emergency and fairness of relief after disasters have occurred, a collaborative decision-making system for emergency relief materials dispatching is established. According to the forecast of the demand for postdisaster relief materials, the entropy weight-TOPSIS method is applied to measure the urgency of the disaster area; then, a “Hub-and-Spoke” dispatching network is constructed. In this paper, a multiobjective collaborative relief material dispatching model is built, which has great performance in terms of minimal distribution cost and maximal fairness, and the objective of fairness requires minimizing the penalty cost caused by unsatisfied demands. Based on the urgency of demand points, the simulated annealing algorithm is designed to solve the Pareto disaggregation of multiobjective optimization model. The performance of the model is verified with the case of Wenchuan Earthquake. The results indicate that if the fair distribution of supplies is emphasized, it will increase the number of rescue vehicles and the number of distribution batches. On the other hand, a variety of relief material dispatching plans can be provided based on calculation of the Pareto front for policy-makers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.