The future sixth generation (6G) is going to face the significant challenges of massive connections and green communication. Recently, reconfigurable intelligent surfaces (RIS) and non-orthogonal multiple access (NOMA) have been proposed as two key technologies to solve the above problems. Motivated by this fact, we consider a downlink RIS-aided NOMA system, where the source aims to communicate with the two NOMA users via RIS. Considering future network supporting real-time service, we investigate the system performance with the view of effective capacity (EC), which is an important evaluation metric of delay sensitive systems. Specifically, we derive the analytical expressions of the EC of the near and far users. To obtain more useful insights, we deduce the analytical approximation expressions of the EC in the low signal-to-noise-ratio approximation by utilizing Taylor expansion. Moreover, we provide the results of orthogonal multiple access (OMA) for the purpose of comparison. It is found that (1) The number of RIS components and the transmission power of the source have important effects on the performance of the considered system; (2) Compared with OMA, NOMA system has higher EC due to the short transmission time.
Industrial Internet of Things (IIoT) formation of richer ecosystem of intelligent interconnected devices while enabling new levels of digital innovation has essentially transformed and revolutionized global manufacturing and industry 4.0. Conversely, the prevalent distributed nature of IIoT, Industrial 5G, underlying IoT sensing devices, IT/OT convergence, Edge Computing, and Time Sensitive Networking makes it an impressive and potential target for cyber-attackers. Multi-variant persistent and sophisticated bot attacks are considered catastrophic for connects IIoTs. Besides, botnet attack detection is extremely complex and decisive. Thus, efficient and timely detection of IIoT botnets is a dire need of the day. We propose a hybrid intelligent Deep Learning (DL)-enabled mechanism to secure IIoT infrastructure from lethal and sophisticated multi-variant botnet attacks. The proposed mechanism has been rigorously evaluated with latest available dataset, standard and extended performance evaluation metrics, and current DL benchmark algorithms. Besides, cross validation of our results are also performed to clearly show overall performance. The proposed mechanisms outperforms in identifying accurately multi-variant sophisticated bot attacks by achieving 99.94% detection rate. Besides, our proposed technique attains 0.066(ms) time that also shows the promising results in terms of speed efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.