The neural processes underlying pain memory are not well understood. To explore these processes, contact heat-evoked potentials (CHEPs) were recorded in humans with electroencephalography (EEG) technique during a delayed matching-to-sample task, a working memory task involving presentations of two successive painful heat stimuli (S-1 and S-2) with different intensities separated by a 2-s interval (the memorization period). At the end of the task, the subject was required to discriminate the stimuli by indicating which (S-1 or S-2) induced more pain. A control task was used, in which no active discrimination was required between stimuli. All event-related potential (ERP) analysis was aligned to the onset of S-1. EEG activity exhibited two successive CHEPs: an N2-P2 complex (∼400 ms after onset of S-1) and an ultralate component (ULC, ∼900 ms). The amplitude of the N2-P2 at vertex, but not the ULC, was significantly correlated with stimulus intensity in these two tasks, suggesting that the N2-P2 represents neural coding of pain intensity. A late negative component (LNC) in the frontal recording region was observed only in the memory task during a 500-ms period before onset of S-2. LNC amplitude differed between stimulus intensities and exhibited significant correlations with the N2-P2 complex. These indicate that the frontal LNC is involved in maintenance of intensity of pain in working memory. Furthermore, alpha-band oscillations observed in parietal recording regions during the late delay displayed significant power differences between tasks. This study provides in the temporal domain previously unidentified neural evidence showing the neural processes involved in working memory of painful stimuli.
High stakes can be stressful whether one is telling the truth or lying. However, liars can feel extra fear from worrying to be discovered than truth-tellers, and according to the “leakage theory,” the fear is almost impossible to be repressed. Therefore, we assumed that analyzing the facial expression of fear could reveal deceits. Detecting and analyzing the subtle leaked fear facial expressions is a challenging task for laypeople. It is, however, a relatively easy job for computer vision and machine learning. To test the hypothesis, we analyzed video clips from a game show “The moment of truth” by using OpenFace (for outputting the Action Units (AUs) of fear and face landmarks) and WEKA (for classifying the video clips in which the players were lying or telling the truth). The results showed that some algorithms achieved an accuracy of >80% merely using AUs of fear. Besides, the total duration of AU20 of fear was found to be shorter under the lying condition than that from the truth-telling condition. Further analysis found that the reason for a shorter duration in the lying condition was that the time window from peak to offset of AU20 under the lying condition was less than that under the truth-telling condition. The results also showed that facial movements around the eyes were more asymmetrical when people are telling lies. All the results suggested that facial clues can be used to detect deception, and fear could be a cue for distinguishing liars from truth-tellers.
Previous studies on human cognition show that people with different cultural backgrounds may differ in various ways. However, there are other unexplored possibilities for cultural differences including degree of handedness thought to reflect hemispheric coordination, reliance on verbal versus visual representation in problem solving, and working memory capacity both spatial and operational. We assessed each of these using the Edinburgh scale, a validated scale of style of processing, and two automatic working memory span tasks. Participants were either native Chinese students (who spoke Mandarin) or American students. Data showed that culture impacted the set of measures but gender did not and these factors did not interact. Chinese and American students showed the largest difference in their operational working memory. We also examined the pattern of correlations among the measures across the two groups and found differences due to cultural group as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.