Particulate matter (PM) pollution is a serious concern for the environment and public health. To protect indoor air quality, nanofiber filters have been used to coat window screens due to their high PM removal efficiency, transparency and low air resistance. However, these materials have poor mechanical property. In this study, electrostatic induction-assisted solution blowing was used to fabricate polylactide stereocomplex (sc-PLA), which served as reinforcement to enhance the physical cross-linking point to significantly restrict poly(methyl methacrylate) (PMMA) molecular chain motion and improve the mechanical properties of sc-PLA/PMMA nanofibers. Moreover, the introduction of sc-PLA led to the formation of thick/thin composite nanofiber structure, which is beneficial for the mechanical property. Thus, sc-PLA/PMMA air filters of ~83% transparency with 99.5% PM2.5 removal and 140% increase in mechanical properties were achieved when 5 wt % sc-PLA was added to PMMA. Hence, the addition of sc-PLA to transparent filters can effectively improve their performance.
In this work, a nylon 6 nanofibrous membrane was prepared via solution blowing technology and followed hot-press as scaffold for nanofiltration. The structure and properties of the hot-pressed nylon 6 nanofibrous membrane (HNM) were studied the effect of hot-pressing parameters and areal densities. Then an ultra-thin polyamide (PA) active layer was prepared by interfacial polymerization on HNM. The effects of nanofibrous scaffolds on the surface properties of ultra-thin nanofiltration membranes and their filtration performance were studied. Results showed that the nylon 6 nanofibers prepared at a concentration of 15 wt % had a good morphology and diameter distribution and the nanofibers were stacked more tightly and significantly reduced in diameter after hot pressing at 180 °C under the pressure of 15 MPa for 10 s. When the porous scaffold was prepared, HNM with an areal density of 9.4 and 14.1 g/m2 has a better apparent structure, a smaller pore size, a higher porosity and a greater strength. At the same time, different areal densities of HNM have an important influence on the preparation and properties of nanofiltration membranes. With the increase of areal density, the uniformity of HNM increased while their surface roughness and pore size decreased, which is beneficial to the establishment of PA barrier layer. With areal density of 9.4 and 14.1 g/m2, the as-prepared nanofiltration membrane has a smoother surface and more outstanding filtration performance. The pure water flux is 13.1 L m−2 h−1 and the filtration efficiencies for NaCl and Na2SO4 are 81.3% and 85.1%, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.