Interstitial fibrosis is a typical feature of all progressive renal diseases. The process of fibrosis is frequently coupled with the presence of pro-fibrotic factors and inflammation. Naringin is a dihydroflavone compound that has been previously reported to exhibit anti-fibrotic effects in the liver, where it prevents oxidative damage. In the present study, a rat model of renal interstitial fibrosis and fibrosis cell model were established to evaluate the effects of naringin on inflammatory proteins and fibrosis markers in kidney of rats and NRK-52E cells, and to elucidate the role of the TGF-β/Smad signaling pathway in this mechanism. Compared with those in fibrotic NRK-52E cells that were stimulated by transforming growth factor-β (TGF-β), gene expression levels of α-smooth muscle actin (α-SMA), collagen 1 (COL1A1), collagen 3 (COL3A1), interleukin (IL)-1β, IL-6 and tumor necrosis factor-α (TNF-α) were all found to be significantly decreased in fibrotic NRK-52E cells following treatment with naringin (50, 100 and 200 ng/ml). Results from the histopathological studies showed that naringin treatment preserved the renal tissue structure and reduced the degree of fibrosis in the kidney tissues of rats that underwent unilateral ureteral obstruction (UUO). In addition, naringin administration reduced the expression of α-SMA, COL1A1, COL3A1, IL-1β, IL-6 and TNF-α in the kidneys of rats following UUO. The current study, using western blot analysis, indicated that naringin also downregulated the activation of Smad2/3 and the expression of Smad4, high-mobility group protein B1, activator protein-1, NF-κB and cyclooxygenase-2 whilst upregulating the expression of Smad7 in fibrotic NRK-52E cells and rats in the UUO group. In conclusion, naringin could antagonize renal interstitial fibrosis by regulating the TGF-β/Smad pathway and the expression of inflammatory factors.
Severe acetaminophen (APAP)-induced hepatic damage is the second most common cause for hepatic transplantation. Clinically, hepatic damage caused by APAP is treated using N-acetyl-L-cysteine, which can induce numerous side effects. Naringin, a bioflavonoid abundant in grapefruit and other citrus fruits, displays marked antiinflammatory and antioxidant activities. Herein, we aimed to investigate the potential mechanism underlying naringin-mediated protection against APAP-induced acute hepatotoxicity. We observed that naringin afforded protection against APAPinduced acute liver failure in mice. Importantly, pretreatment with naringin before APAP administration further increased antioxidant enzyme expression, inhibited the production of proinflammatory cytokines, and activated apoptotic pathways. Furthermore, we observed that the protective effect was associated with the upregulation of cation transport regulator-like protein 2 (CHAC2) and nuclear factor erythroid derived-2-related factor 2 (Nrf2). Notably, CHAC2 knockdown inhibited Nrf2 activation and naringin-mediated antioxidant, antiinflammatory, and antiapoptotic effects in APAP-induced liver injury. Likewise, si-Nrf2 blocked the protective effect of naringin against APAP-induced liver injury. Collectively, our results indicate that naringin may be a potent CHAC2 activator, alleviating APAP-induced hepatitis via CHAC2-mediated activation of the Nrf2 pathway. These data provide new insights into mechanisms through which CHAC2 regulates APAP-induced liver injury by targeting Nrf2, which should be considered a novel therapeutic target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.