Rapid, low-cost, species-specific diagnosis, based upon DNA testing, is becoming important in the treatment of patients with infectious diseases. Here, we demonstrate an innovation that uses origami to enable multiplexed, sensitive assays that rival polymerase chain reactions (PCR) laboratory assays and provide high-quality, fast precision diagnostics for malaria. The paper-based microfluidic technology proposed here combines vertical flow sample-processing steps, including paper folding for whole-blood sample preparation, with an isothermal amplification and a lateral flow detection, incorporating a simple visualization system. Studies were performed in village schools in Uganda with individual diagnoses being completed in <50 min (faster than the standard laboratory-based PCR). The tests, which enabled the diagnosis of malaria species in patients from a finger prick of whole blood, were both highly sensitive and specific, detecting malaria in 98% of infected individuals in a double-blind first-in-human study. Our method was more sensitive than other field-based, benchmark techniques, including optical microscopy and industry standard rapid immunodiagnostic tests, both performed by experienced local healthcare teams (which detected malaria in 86% and 83% of cases, respectively). All assays were independently validated using a real-time double-blinded reference PCR assay. We not only demonstrate that advanced, low-cost DNA-based sensors can be implemented in underserved communities at the point of need but also highlight the challenges associated with developing and implementing new diagnostic technologies in the field, without access to laboratories or infrastructure.
CPA is a class of isothermal amplification reactions that is carried out by a strand displacement DNA polymerase and does not require an initial denaturation step or the addition of a nicking enzyme. At the assay temperature of 63°C, the formation of a primer-template hybrid at transient, spontaneous denaturation bubbles in the DNA template is favored over re-annealing of the template strands by the high concentration of primer relative to template DNA. Strand displacement is encouraged by the annealing of cross primers with 5′ ends that are not complementary to the template strand and the binding of a displacement primer upstream of the crossing primer. The resulting exponential amplification of target DNA is highly specific and highly sensitive, producing amplicons from as few as four bacterial cells. Here we report on the basic CPA mechanism – single crossing CPA – and provide details on alternative mechanisms.
We demonstrate, for the first time, the multiplexed determination of microbial species from whole blood using the paper‐folding technique of origami to enable the sequential steps of DNA extraction, loop‐mediated isothermal amplification (LAMP), and array‐based fluorescence detection. A low‐cost handheld flashlight reveals the presence of the final DNA amplicon to the naked eye, providing a “sample‐to‐answer” diagnosis from a finger‐prick volume of human blood, within 45 min, with minimal user intervention. To demonstrate the method, we showed the identification of three species of Plasmodium, analyzing 80 patient samples benchmarked against the gold‐standard polymerase chain reaction (PCR) assay in an operator‐blinded study. We also show that the test retains its diagnostic accuracy when using stored or fixed reference samples.
A virus known as severe fever with thrombocytopenia syndrome virus (SFTSV) was recently identified as the etiological agent of severe fever with thrombocytopenia syndrome (SFTS) in China. Reliable laboratory detection and identification of this virus are likely to become clinically and epidemiologically desirable. We developed a nearly instrument-free, simple molecular method which incorporates reverse transcription-cross-priming amplification (RT-CPA) coupled with a vertical flow (VF) visualization strip for rapid detection of SFTSV. The RT-CPA-VF assay targets a conserved region of the M segment of the SFTSV genome and has a limit of detection of 100 copies per reaction, with no cross-reaction with other vector-borne bunyaviruses and bacterial pathogens. The performance of the RT-CPA-VF assay was determined with 175 human plasma specimens collected from 89 clinically suspected SFTS patients and 86 healthy donors. The sensitivity and specificity of the assay were 94.1% and 100.0%, respectively, compared with a combination of virus culture and real-time RT-PCR. The entire procedure, from specimen processing to result reporting, can be completed within 2 h. The simplicity and nearly instrument-free platform of the RT-CPA-VF assay make it practical for point-of-care testing.
Two obstacles hindering solar energy conversion by photoelectrochemical (PEC) water-splitting devices are the charge separation and the transport efficiency at the photoanode-electrolyte interface region. Herein, core-shell-structured Ni@Ni(OH) nanoparticles were electrodeposited on the surface of an n-type Si photoanode. The Schottky barrier between Ni and Si is sensitive to the thickness of the Ni(OH) shell. The photovoltage output of the photoanode increases with increasing thickness of the Ni(OH) shell, and is influenced by interactions between Ni and Ni(OH) , the electrolyte screening effect, and the p-type nature of the Ni(OH) layer. Ni@Ni(OH) core-shell nanoparticles with appropriate shell thicknesses coupled to n-type Si photoanodes promote the separation of photogenerated carriers and improve the charge-injection efficiency to nearly 100 %. An onset potential of 1.03 V versus reversible hydrogen electrode (RHE) and a saturated current density of 36.4 mA cm was obtained for the assembly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.