The subject of tail estimation for randomly censored data from a heavy tailed distribution receives growing attention, motivated by applications for instance in actuarial statistics. The bias of the available estimators of the extreme value index can be substantial and depends strongly on the amount of censoring. We review the available estimators, propose a new bias reduced estimator, and show how shrinkage estimation can help to keep the MSE under control. A bootstrap algorithm is proposed to construct confidence intervals. We compare these new proposals with the existing estimators through simulation. We conclude this paper with a detailed study of a long-tailed car insurance portfolio, which typically exhibit heavy censoring.
Bias reduction in tail estimation has received considerable interest in extreme value analysis. Estimation methods that minimize the bias while keeping the mean squared error (MSE) under control, are especially useful when applying classical methods such as the Hill (1975) estimator. In Caeiro et al. (2005) minimum variance reduced bias estimators of the Pareto tail index were first proposed where the bias is reduced without increasing the variance with respect to the Hill estimator. This method is based on adequate external estimation of a pair of second-order parameters. Here we revisit this problem from a Bayesian point of view starting from the extended Pareto distribution (EPD) approximation to excesses over a high threshold, as developed in Beirlant et al. (2009) using maximum likelihood (ML) estimation. Using asymptotic considerations, we derive an appropriate choice of priors leading to a Bayes estimator for which the MSE curve is a weighted average of the Hill and EPD-ML MSE curves for a large range of thresholds, under the same conditions as in Beirlant et al. (2009). A similar result is obtained for tail probability estimation. Simulations show surprisingly good MSE performance with respect to the existing estimators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.