Efficient approaches for intracellular delivery of nucleic acid reagents to achieve sensitive detection and regulation of gene and protein expressions are essential for chemistry and biology. We develop a novel electrostatic DNA nanoassembly that, for the first time, realizes hybridization chain reaction (HCR), a target-initiated alternating hybridization reaction between two hairpin probes, for signal amplification in living cells. The DNA nanoassembly has a designed structure with a core gold nanoparticle, a cationic peptide interlayer, and an electrostatically assembled outer layer of fluorophore-labeled hairpin DNA probes. It is shown to have high efficiency for cellular delivery of DNA probes via a unique endocytosis-independent mechanism that confers a significant advantage of overcoming endosomal entrapment. Moreover, electrostatic assembly of DNA probes enables target-initialized release of the probes from the nanoassembly via HCR. This intracellular HCR offers efficient signal amplification and enables ultrasensitive fluorescence activation imaging of mRNA expression with a picomolar detection limit. The results imply that the developed nanoassembly may provide an invaluable platform in low-abundance biomarker discovery and regulation for cell biology and theranostics.
TNF-Rp55-KO mice exhibited impaired alkali-induced CNV through reduced intracorneal infiltrating macrophage VEGF and iNOS expression.
High-quality graphene scrolls (GSS) with a unique scrolled topography are designed using a microexplosion method. Their capacitance properties are investigated by cyclic voltammetry, galvanostatic charge-discharge and electrical impedance spectroscopy. Compared with the specific capacity of 110 F g(-1) for graphene sheets, a remarkable capacity of 162.2 F g(-1) is obtained at the current density of 1.0 A g(-1) in 6 M KOH aqueous solution owing to the unique scrolled structure of GSS. The capacity value is increased by about 50% only because of the topological change of graphene sheets. Meanwhile, GSS exhibit excellent long-term cycling stability along with 96.8% retained after 1000 cycles at 1.0 A g(-1). These encouraging results indicate that GSS based on the topological structure of graphene sheets are a kind of promising material for supercapacitors.
To assess the clinical significance of IL-17 in patients with sepsis-induced acute respiratory distress syndrome (ARDS) and to investigate the effects of IL-17 blocking in a mouse model of acute lung injury (ALI). Significantly increased IL-17 level was found in patients with sepsis-related ARDS compared to healthy controls, whereas significantly increased plasma IL-17 level was also observed in non-survivors compared to that in survivors. According to the data from the mouse ALI model, we found significantly increased IL-17 level in lung tissue lysates, mouse bronchoalveolar lavage fluid (mBALF) and plasma at 6, 12 and 24 h after ALI. Histological analyses revealed that reduced sign of pathological changes and lung injury score in the lungs at 48 h after IL-17 blocking antibody administration. Reduced level of proinflammatory tumor necrosis factor α and increased level of anti-inflammatory factor interleukin-10 were found in both mBALF and plasma. Moreover, IL-17 blocking antibody administration attenuated the expression of RORγt and activity of PI3K-Akt pathway. Increased IL-17 was presented in patients with sepsis-induced ARDS and IL-17 may serve as a biomarker to indicate the severity of ARDS. Moreover, IL-17 antibody administration could relieve the ALI symptom by affecting RORγt level and PI3K pathway.
Dendritic cells (DCs) are responsible for the initiation of immune responses. Our study demonstrates a new pathway for generating a large quantity of stimulatory monocyte-derived DCs (Mo-DCs) from human monocytes using anti-4-1BB ligand (4-1BBL) mAb to trigger reverse signaling. The anti-4-1BBL-driven Mo-DCs (DCs(alpha-4-1BBL)) not only express higher levels of CD86, CD83 and HLA-DR, when compared with the Mo-DCs matured by tumor necrosis factor alpha, but also exhibit a unique phenotype that expresses lower levels of PD-L1. High levels of GM-CSF, M-CSF and Flt3 ligand (FL) were found in the anti-4-1BBL-differentiation culture. Neutralizing M-CSF, GM-CSF and FL inhibited Mo-DC proliferation stimulated by anti-4-1BBL mAb, suggesting that M-CSF, GM-CSF and FL are involved in cell proliferation stimulated by anti-4-1BBL. Further analysis of the DCs(alpha-4-1BBL) showed increased secretion of T(h)1-type cytokines IL-12 and IFN-gamma and decreased secretion of IL-10. DCs(alpha-4-1BBL) induced much stronger proliferative responses in the mixed lymphocyte reaction assay when compared with DCs derived by GM-CSF. Moreover, DCs(alpha-4-1BBL) preferentially induced T(h)1 responses. We have further demonstrated that anti-4-1BBL antibody stimulated nuclear translocation of NF-kappaB from the cytoplasm in monocytes, suggesting that reverse signaling by 4-1BBL is likely responsible for mediating DC differentiation. Collectively, we have found that reverse signaling of 4-1BBL promotes the differentiation of potent T(h)1-inducing DCs from human monocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.