Purpose. The objective of this study is to investigate the use of texture analysis (TA) of magnetic resonance image (MRI) enhanced scan and machine learning methods for distinguishing different grades in breast invasive ductal carcinoma (IDC). Preoperative prediction of the grade of IDC can provide reference for different clinical treatments, so it has important practice values in clinic. Methods. Firstly, a breast cancer segmentation model based on discrete wavelet transform (DWT) and K-means algorithm is proposed. Secondly, TA was performed and the Gabor wavelet analysis is used to extract the texture feature of an MRI tumor. Then, according to the distance relationship between the features, key features are sorted and feature subsets are selected. Finally, the feature subset is classified by using a support vector machine and adjusted parameters to achieve the best classification effect. Results. By selecting key features for classification prediction, the classification accuracy of the classification model can reach 81.33%. 3-, 4-, and 5-fold cross-validation of the prediction accuracy of the support vector machine model is 77.79%~81.94%. Conclusion. The pathological grading of IDC can be predicted and evaluated by texture analysis and feature extraction of breast tumors. This method can provide much valuable information for doctors’ clinical diagnosis. With further development, the model demonstrates high potential for practical clinical use.
Climate change has increased the frequency of various types of meteorological disasters in recent years. Finding the primary factors that limit the emergency response capability of meteorological disasters through the evaluation of that capability and proposing corresponding improvement measures in order to increase that capability is of great practical importance. The evaluation of meteorological disaster emergency response capability still has some issues. The majority of research methods use qualitative analysis, which makes it challenging to deal with fuzzy factors, leading to conclusions that are subjective and insufficiently rigorous. The evaluation models themselves are also complex and challenging to simulate and analyze, making it challenging to promote and use them in practice. Deep learning techniques have made it easier to collect and process large amounts of data, which has opened new avenues for advancement in the emergency management of weather-related disasters. In this paper, we suggest a Recurrent Neural Network (RNN)-based dynamic capability feature extraction method. The process of evaluation content determination and index selection is used to build a meteorological disaster emergency response capability evaluation index system before an encoder, based on the encoder–decoder architecture, is built for dynamic feature extraction. The RNN autoencoder deep learning ability dynamic rating method used in this paper has been shown through a series of experiments to be able to not only efficiently extract ability features from time series data and reduce the dimensionality of ability features, but also to reduce the focus of the ability evaluation model on simple and abnormal samples, concentrate the model learning on difficult samples, and have a higher accuracy. As a result, it is more suitable for the problem situation at evaluation of the disaster capability.
Breast-conserving surgery followed by radiotherapy to the whole breast and boost irradiation to the lumpectomy cavity (LC) is the standard strategy for the early stage breast cancer patients. Accurate segmentation of the target volume is a prerequisite for accurate radiotherapy, which directly affects the success or failure of tumor treatment. The current delineation of target is mainly done by manual drawing, which is time-consuming, laborious and easy to be affected by subjective factors. To solve this problem, we enhance the MR breast images using DWT (discrete wavelet transform) to get more detail of MR image feature firstly. Secondly, we use K-means algorithm to classify the feature vectors and establish the image segmentation model. Finally, compared with the traditional threshold segmentation method, the model is most suitable for automatic delineation of radiotherapy target area and the setting of optimal parameters are obtained. This method can realize the accurate automatic delineation of target area basically, and solve the problem of lack of accuracy and standardization in current tumor bed delineation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.