Temporal data series of stable Artificial Lights At Night (ALAN) obtained from sources such as DMSP/OLS and VIIRS/DNB provide valuable insights into the dynamics of urban expansion. This study introduces a novel methodology for characterizing urban boundaries, which combines textural analysis utilizing the Co-occurrence matrix and urban surface delineation employing the Wombling contour detection algorithm. Applying this method to the city of Korhogo in northern Côte d'Ivoire, the findings reveal an irregular and gradual evolution of urban surfaces between 1992 and 2012, with a rate of change of 35 km2. However, starting from 2012, a rapid urbanization process is observed, continuing until 2020, characterized by an evolution rate of approximately 45 km2. Considering the significant urban expansion witnessed in the city of Korhogo, it is imperative to implement appropriate urban management strategies and measures for ecosystem protection.
The present study was undertaken to characterize the bushfire regime and the climatic factors influencing its propagation in the Bounkani region. Thus, this work analyzes the spatio-temporal dynamics of fires and the relationship between climatic variables and pyrological variables. First, it exploits time series of active fires and burned areas from MODIS Active fires (MCD14ML) and MODIS Burned area (MCD60A1) data for the period from 2000 to 2017. The methodology is based on the evaluation of seasonality and fire occurrences, and on the spatio-temporal evolution of fires. The results obtained indicate that, on average, the fire season occurs between the months of November and March, generally corresponding to the dry season. Also, the number of fires and the area burned follow a decreasing trend during the 17 years of study. The months of December and January recorded the highest peaks of burned areas and fire outbreaks respectively. Finally, the analysis of the dependence between climatic variables and pyrological variables by the Pearson correlation method showed the influence of climatic parameters in the outbreak and spread of bushfires in the study area. Precipitation and relative humidity are the best predictors with a negative influence on fire activity, while the positive predictors remain temperature. These variables directly impact fire regime in general. The results of this study will assist policy makers and managers in decision making for the implementation of fire control strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.