The detection and repair of the cycle slip is a key step for high precision navigation and positioning in indoor environments. Different methods have been developed to detect and repair cycle slips for carrier phase processing. However, most approaches are designed to eliminate the effects of the ionosphere in an outdoor environment, and many of them use pseudorange (code) information that is no longer suitable for indoor multipath environments. In this paper, a method based on the geometry-free combination without the pseudorange data is proposed to detect and fix cycle slips. A ground-based navigation system is built for data collection. Unlike the traditional dual-frequency cycle slip detection method, the Beidou B1, GPS L1 carrier phase combination is used instead of the B1, B2, or L1, L2 carrier phase combination, Ublox is used for data collecting. For fixing the cycle slips quickly, an improved adaptive Particle Swarm Optimization (PSO) algorithm is employed. We compared the performance of the new method with the existing two methods using simulated data in different conditions. The results show that the proposed method has better performance than other methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.