Trajectory-based aircraft operation and control is one of the hot issues in air traffic management. However, the accurate mechanism modeling of aircraft is tough work, and the operation data have not been effectively utilized in many studies. So, in this work, we apply the model-free adaptive iterative learning control method to address the time-of-arrival control problem in trajectory-based aircraft operation. This problem is first formulated into a trajectory tracking problem with along-track wind disturbance. Through rigorous analysis, it is shown that this method, combined with point-to-point iterative learning control (ILC) strategy, can effectively deal with the arrival time control problem with multiple time constraints. Then, the terminal ILC strategy is applied, aiming to resolve the same problem with a time constraint at the end point. Compared with the PID (Proportional Integral Derivative) type ILC, the proposed method improves control performance by 11.15% in root mean square of tracking error and 9.32% in integral time absolute error. The sensitivity and flexibility of the data-driven approach is further verified through numerical simulations.
The adaptive trajectory and attitude control is essential for the four-dimensional (4D) trajectory operation of civil aircraft in symmetric thrust flight. In this work, an integrated trajectory and attitude control scheme is proposed based on the =multi-input multi-output (MIMO) model free adaptive control (MFAC) method. First, the full-form dynamic linearization technique is adopted to build the equivalent data model of aircraft. Also, the MIMO MFAC scheme with saturation constraint is designed to achieve an accurate tracking control for a given 4D trajectory and attitude. Besides, the performance limitations of aircraft are taken into consideration, and the MIMO MFAC scheme with hard constraints is designed. In addition, to improve the simulation efficiency, a control scheme with mixed constraints, i.e., saturation and hard constraints, is further proposed. It can be seen from the simulation results that the proposed method can perform an integrated control of the aircraft 4D trajectory and attitude without precise modeling, and the control performance is better than that of the model-based control method in terms of flight altitude and yaw angle control. The integrated data-driven control scheme proposed in this paper provides a theoretical solution for the precise operation of aircraft under 4D trajectory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.