The microstructure of and damage to the upper divertor components in EAST were characterized by using metallography, EBSD, and SEM. Under the synergistic effect of heat load and plasma irradiation, cracking, recrystallization, and interface debonding were found in the components of the upper divertor target. The crack propagates downward from the heat loading surface along the heat flux direction, and the crack propagation mode is an intergranular fracture. The thermal loads deposited on the edge of monoblocks raise the temperature higher than the recrystallization temperature of pure tungsten, and the microstructure changes from being in a rolled state to being recrystallized. Additionally, cracks exist in both recrystallized and rolled areas. EBSD boundary maps show that the range of the recrystallization area is determined via the heat flux distribution. The Cu/CuCrZr interface of the cooling components near the thermal loading area is debonded, and the structural integrity is destroyed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.