The emergence and spread of plasmid-associated multidrug resistance in bacterial pathogens is a key global threat to public health. It is important to understand the mechanisms of the formation and evolution of these plasmids in patients, hospitals, and the environment.
Toxin–antitoxin (TA) systems are typically composed of a stable toxin and a labile antitoxin; the latter counteracts the toxicity of the former under suitable conditions. TA systems are classified into eight types based on the nature and molecular modes of action of the antitoxin component so far. The 10 pairs of TA systems discovered and experimentally characterised in Pseudomonas aeruginosa are type II TA systems. Type II TA systems have various physiological functions, such as virulence and biofilm formation, protection host against antibiotics, persistence, plasmid maintenance, and prophage production. Here, we review the type II TA systems of P. aeruginosa, focusing on their biological functions and regulatory mechanisms, providing potential applications for the novel drug design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.