Among numerous molecules found in the gut ecosystem, quorum sensing (QS) molecules represent an overlooked part that warrants highlighting. QS relies on the release of small molecules (auto-inducers) by bacteria that accumulate in the environment depending on bacterial cell density. These molecules not only are sensed by the microbial community but also interact with host cells and contribute to gut homeostasis. It therefore appears entirely appropriate to highlight the role of these molecules on the immune system in dysbiosis-associated inflammatory conditions where the bacterial populations are imbalanced. Here, we intent to focus on one of the most studied QS molecule family, namely, the type I auto-inducers represented by N- acyl-homoserine lactones (AHL). First described in pathogens such as Pseudomonas aeruginosa , these molecules have also been found in commensals and have been recently described within the complex microbial communities of the mammalian intestinal tract. In this mini-review, we will expound on this emergent field of research. We will first recall evidence on AHL structure, synthesis, receptors, and functions regarding interbacterial communication. Then, we will discuss their interactions with the host and particularly with agents of the innate and adaptive gut mucosa immunity. This will reveal how this new set of molecules, driven by microbial imbalance, can interact with inflammation pathways and could be a potential target in inflammatory bowel disease (IBD). The discovery of the general impact of these compounds on the detection of the bacterial quorum and on the dynamic and immune responses of eukaryotic cells opens up a new field of pathophysiology.
Bacteria are known to communicate with each other and regulate their activities in social networks by secreting and sensing signaling molecules called autoinducers, a process known as quorum sensing (QS). This is a growing area of research in which we are expanding our understanding of how bacteria collectively modify their behavior but are also involved in the crosstalk between the host and gut microbiome. This is particularly relevant in the case of pathologies associated with dysbiosis or disorders of the intestinal ecosystem. This review will examine the different QS systems and the evidence for their presence in the intestinal ecosystem. We will also provide clues on the role of QS molecules that may exert, directly or indirectly through their bacterial gossip, an influence on intestinal epithelial barrier function, intestinal inflammation, and intestinal carcinogenesis. This review aims to provide evidence on the role of QS molecules in gut physiology and the potential shared by this new player. Better understanding the impact of intestinal bacterial social networks and ultimately developing new therapeutic strategies to control intestinal disorders remains a challenge that needs to be addressed in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.