Relationship between body weight (BW) and seven morphobiometrical traits [withers height (WH), body length (BL), chest girth (CG), shoulder width (SW), ear length (EL), cannon circumference (CC) and neck circumference (NC)] were studied in 142 Red Sokoto goats aged 19.3-30.6 months old using path analysis. The animals were randomly selected in certain smallholders' farms located in northern Nigeria. Pair-wise correlations among body weights and linear type traits were positive and highly significant (r = 0.74 -0.92; P< 0.01). The path analysis revealed that body length had the highest direct effect on body weight, closely followed by chest girth and shoulder width, respectively (path coefficient = 0.354, 0.253 and 0.214 for BL, CG and SW, respectively). The optimum linear regression model with a coefficient of determination ( R 2 ) value of 0.934 included forecast indices, such as body length, chest girth, shoulder width, cannon circumference and neck circumference. This regression equation could be used to predict the body weight of Red Sokoto goats in the field and for selection purposes.
We provide evidence from isoenzyme analysis, hybridization with repetitive DNA probes, behavioural studies and morphometrics that 4 trypanosome isolates from Glossina morsitans submorsitans in The Gambia constitute a new species now named Trypanosoma (Nannomonas) godfreyi. The bloodstream trypomastigotes of T. (N.) godfreyi are relatively small with a mean length of 13.7 microns (range: 9.1-21.8 microns) and a mean width of 1.65 microns (range: 0.65-2.69 microns). There is no free flagellum and the marginal kinetoplast is subterminal to a rounded posterior end; the undulating membrane is usually conspicuous. As with other Nannomonas, T. godfreyi developed in the midgut and proboscis of Glossina and infections matured in 21-28 days in laboratory G.m. morsitans. In The Gambia the normal vertebrate host appears to be the warthog, Phacochoerus aethiopicus, although elsewhere other wild and domestic suids may also be implicated in the life-cycle. T. godfreyi was identified unequivocally using a 380 bp DNA probe specific for a major genomic repeat sequence; its isoenzyme profile distinguished it clearly from T. simiae and three strain groups of T. congolense: savannah, riverine-forest and kilifi.
BackgroundAnimal trypanosomosis is a major economic disease in Nigeria causing considerable morbidity and mortality in livestock. Despite reports in other animals, the disease is under reported in pigs.MethodsWe conducted a community based epidemiological study on African animal trypanosomosis in Karim Lamido area of Taraba State, Nigeria using species-specific PCR on 712 pigs and 706 of the 2822 captured tsetse flies. Data were analysed using Chi-square, odds ratio and multivariate analysis at 95 % confidence interval.ResultsOverall prevalence of porcine trypanosomosis was 16.6 % and ranged between 2.0 and 8.8 % across Trypanosoma species. Seasonal distribution of porcine trypanosomosis varied significantly (χ2 = 16.62, df = 3, P = 0.0008) ranging between 7.9 and 23.6 % across seasons. Mixed infections involving T. b. brucei, T. congolense forest and T. congolense savannah recorded infection rates ranging between 2.5 and 9.3 %. There were significant variations between the trypanosome infection rates in relation to age (χ2 = 7.629, df = 1, P = 0.0057, OR = 1.932, 95 % CI = 1.203–3.100), sex (χ2 = 10.09, df = 1, P = 0.0015, OR = 2.085, 95 % CI = 1.315–3.304) and body condition (χ2 = 22.10, df = 2, P < 0.0001) of pigs ranging between 10.4 and 30.3 %. Tsetse infection rates were 11.2 % (79/706) for Glossina palpalis and 6.8 % (48/706) for G. tachinoides yielding an overall infection rate of 18.0 %.ConclusionTrypanosoma species are prevalent in the study area with similar distribution patterns in both pigs and tsetse flies. Late rainy season, adults, females and pigs with poor body condition recorded higher trypanosome infection rates. Of the three Trypanosoma spp. identified, T. b. brucei showed predominance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.