We performed ferromagnetic resonance and magnetometry experiments to clarify the relationship between two reported magnetic exchange effects arising from interfacial spin-polarized charge transfer in ferromagnetic metal (FM)/molecule bilayers: the magnetic hardening effect and spinterface-stabilized molecular spin chains. To disentangle these effects, we tuned the metal phthalocyanine molecule central site's magnetic moment to enhance or suppress the formation of spin chains in the molecular film. We find that both effects are distinct, and additive. In the process, we extend the list of FM/molecule candidate pairs that are known to generate magnetic exchange effects, experimentally confirm the predicted increase in anisotropy upon molecular adsorption, and show that spin chains within the molecular film can enhance magnetic exchange. Our results confirm, as an echo to progress regarding inorganic spintronic tunnelling, that spintronic tunnelling across structurally ordered organic barriers has been reached through previous magnetotransport experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.