Reward-based learning can easily be applied to real life with a prevalence in children teaching methods. It also allows machines and software agents to automatically determine the ideal behavior from a simple reward feedback (e.g., encouragement) to maximize their performance. Advancements in affective computing, especially emotional speech processing (ESP) have allowed for more natural interaction between humans and robots. Our research focuses on integrating a novel ESP system in a relevant virtual neurorobotic (VNR) application. We created an emotional speech classifier that successfully distinguished happy and utterances. The accuracy of the system was 95.3 and 98.7% during the offline mode (using an emotional speech database) and the live mode (using live recordings), respectively. It was then integrated in a neurorobotic scenario, where a virtual neurorobot had to learn a simple exercise through reward-based learning. If the correct decision was made the robot received a spoken reward, which in turn stimulated synapses (in our simulated model) undergoing spike-timing dependent plasticity (STDP) and reinforced the corresponding neural pathways. Both our ESP and neurorobotic systems allowed our neurorobot to successfully and consistently learn the exercise. The integration of ESP in real-time computational neuroscience architecture is a first step toward the combination of human emotions and virtual neurorobotics.
The creation and simulation of ion channel models using continuous-time Markov processes is a powerful and well-used tool in the field of electrophysiology and ion channel research. While several software packages exist for the purpose of ion channel modeling, most are GUI based, and none are available as a Python library. In an attempt to provide an easy-to-use, yet powerful Markov model-based ion channel simulator, we have developed ModFossa, a Python library supporting easy model creation and stimulus definition, complete with a fast numerical solver, and attractive vector graphics plotting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.