Assessments of the impact of offshore energy developments are constrained because it is not known whether fine-scale behavioural responses to noise lead to broader-scale displacement of protected small cetaceans. We used passive acoustic monitoring and digital aerial surveys to study changes in the occurrence of harbour porpoises across a 2000 km2 study area during a commercial two-dimensional seismic survey in the North Sea. Acoustic and visual data provided evidence of group responses to airgun noise from the 470 cu inch array over ranges of 5–10 km, at received peak-to-peak sound pressure levels of 165–172 dB re 1 µPa and sound exposure levels (SELs) of 145–151 dB re 1 µPa2 s−1. However, animals were typically detected again at affected sites within a few hours, and the level of response declined through the 10 day survey. Overall, acoustic detections decreased significantly during the survey period in the impact area compared with a control area, but this effect was small in relation to natural variation. These results demonstrate that prolonged seismic survey noise did not lead to broader-scale displacement into suboptimal or higher-risk habitats, and suggest that impact assessments should focus on sublethal effects resulting from changes in foraging performance of animals within affected sites.
We present a Geographic Information System (GIS) tool, SeaMaST (Seabird Mapping and Sensitivity Tool), to provide evidence on the use of sea areas by seabirds and inshore waterbirds in English territorial waters, mapping their relative sensitivity to offshore wind farms. SeaMaST is a freely available evidence source for use by all connected to the offshore wind industry and will assist statutory agencies in assessing potential risks to seabird populations from planned developments. Data were compiled from offshore boat and aerial observer surveys spanning the period 1979–2012. The data were analysed using distance analysis and Density Surface Modelling to produce predicted bird densities across a grid covering English territorial waters at a resolution of 3 km×3 km. Coefficients of Variation were estimated for each grid cell density, as an indication of confidence in predictions. Offshore wind farm sensitivity scores were compiled for seabird species using English territorial waters. The comparative risks to each species of collision with turbines and displacement from operational turbines were reviewed and scored separately, and the scores were multiplied by the bird density estimates to produce relative sensitivity maps. The sensitivity maps reflected well the amassed distributions of the most sensitive species. SeaMaST is an important new tool for assessing potential impacts on seabird populations from offshore development at a time when multiple large areas of development are proposed which overlap with many seabird species’ ranges. It will inform marine spatial planning as well as identifying priority areas of sea usage by marine birds. Example SeaMaST outputs are presented.
1. Distribution maps of cetaceans and seabirds at basin and monthly scales are needed for conservation and marine management. These are usually created from standardized and systematic aerial and vessel surveys, with recorded animal densities interpolated across study areas. However, distribution maps at basin and monthly scales have previously not been possible because individual surveys have restricted spatial and temporal coverage.2. This study develops an alternative approach consisting of: (a) collating diverse survey data to maximize spatial and temporal coverage, (b) using detection functions to estimate variation in the surface area covered (km 2 ) among these surveys, 254 | Journal of Applied Ecology WAGGITT eT Al. Synthesis and applications.This study provides the largest ever collation and standardization of diverse survey data for cetaceans and seabirds, and the most comprehensive distribution maps of these taxa in the North-East Atlantic. These distribution maps have numerous applications including the identification of important areas needing protection, and the quantification of overlap between vulnerable species and anthropogenic activities. This study demonstrates how the analysis of existing and diverse survey data can meet conservation and marine management needs.
Summary1. Robust estimates of the density or abundance of cetaceans are required to support a wide range of ecological studies and inform management decisions. Considerable effort has been put into the development of line-transect sampling techniques to obtain estimates of absolute density from aerial-and boat-based visual surveys. Surveys of cetaceans using acoustic loggers or digital cameras provide alternative methods to estimate relative density that have the potential to reduce cost and provide a verifiable record of all detections. However, the ability of these methods to provide reliable estimates of relative density has yet to be established. 2. These methodologies were compared by conducting aerial visual line-transect surveys (n = 10 days) and digital video strip-transect surveys (n = 4 days) in the Moray Firth, Scotland. Simultaneous acoustic data were collected from moored echolocation detectors (C-PODs) at 58 locations across the study site. Density surface modelling (DSM) of visual survey data was used to estimate spatial variation in relative harbour porpoise density on a 4 9 4 km grid. DSM was also performed on the digital survey data, and the resulting model output compared to that from visual survey data. Estimates of relative density from visual surveys around acoustic monitoring sites were compared with several metrics previously used to characterise variation in acoustic detections of echolocation clicks. 3. There was a strong correlation between estimates of relative density from visual surveys and digital video surveys (Spearman's q = 0Á85). A correction to account for animals missed on the transect line [previously calculated for visual aerial surveys of harbour porpoise in the North Sea was used to convert relative density from the visual surveys to absolute density. This allowed calculation of the first estimate of a proxy for detection probability in digital video surveys, suggesting that 61% (CV = 0Á53) of harbour porpoises were detected. There was also a strong correlation between acoustic detections and density with Spearman's q = 0Á73 for detection positive hours. 4. These results provide confidence in the emerging use of digital video and acoustic surveys for studying the density of small cetaceans and their responses to environmental and anthropogenic change.
Growing concerns about climate change and energy security have fueled a rapid increase in the development of marine renewable energy installations (MREIs). The potential ecological consequences of increased use of these devices emphasizes the need for high quality environmental impact assessment (EIA). We demonstrate that these processes are hampered severely, primarily because ambiguities in the legislation and lack of clear implementation guidance are such that they do not ensure robust assessment of the significance of impacts and cumulative effects. We highlight why the regulatory framework leads to conceptual ambiguities and propose changes which, for the most part, do not require major adjustments to standard practice. We emphasize the importance of determining the degree of confidence in impacts to permit the likelihood as well as magnitude of impacts to be quantified and propose ways in which assessment of population-level impacts could be incorporated into the EIA process. Overall, however, we argue that, instead of trying to ascertain which particular developments are responsible for tipping an already heavily degraded marine environment into an undesirable state, emphasis should be placed on better strategic assessment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.