Non-contact measurement of gas turbine rotor blade vibration is a non-trivial task, with no method available which achieves this aim without some significant draw-backs. This paper presents a truly non-contact method to estimate rotor blade natural frequencies from casing vibration measurements at a single engine operating speed. An analytical model is derived to simulate the internal casing pressure in a turbine engine including the effects of blade vibration on this pressure signal. It is shown that the internal pressure inside a turbine contains measureable information about the rotor blade natural frequencies and in-turn the casing vibration response also contains this information. The results presented herein show the residual, pressure and casing vibration, spectrum can be used to determine the rotor blade natural frequencies with validation provided for the analytical model by experimental measurements on a simplified test rig. A simulated blade fault in one of the rotor blades is introduced with successful estimation of the simulated faulty blade natural frequency.
Cavitation is one of the main problems reducing the longevity of centrifugal pumps in industry today. If the pump operation is unable to maintain operating conditions around the best efficiency point, it can be subject to conditions that may lead to vaporisation or flashing in the pipes upstream of the pump. The implosion of these vapour bubbles in the impeller or volute causes damaging effects to the pump. A new method of vibration cavitation detection is proposed in this paper, based on adaptive octave band analysis, principal component analysis and statistical metrics. Full scale industrial pump efficiency testing data was used to determine the initial cavitation parameters for the analysis. The method was then tested using vibration measured from a number of industry pumps used in the water industry. Results were compared to knowledge known about the state of the pump, and the classification of the pump according to ISO 10816.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.