To test the hypothesis that tolerating some subretinal fluid (SRF) in patients with neovascular agerelated macular degeneration (nAMD) treated with ranibizumab using a treat-and-extend (T&E) regimen can achieve similar visual acuity (VA) outcomes as treatment aimed at resolving all SRF.Design: Multicenter, randomized, 24-month, phase 4, single-masked, noninferiority clinical trial.Participants: Participants with treatment-naïve active subfoveal choroidal neovascularization (CNV). Methods: Participants were randomized to receive ranibizumab 0.5 mg monthly until either complete resolution of SRF and intraretinal fluid (IRF; intensive arm: SRF intolerant) or resolution of all IRF only (relaxed arm: SRF tolerant except for SRF >200 mm at the foveal center) before extending treatment intervals. A 5-letter noninferiority margin was applied to the primary outcome.Main Outcome Measures: Mean change in best-corrected VA (BCVA), and central subfield thickness and number of injections from baseline to month 24.Results: Of the 349 participants randomized (intensive arm, n ¼ 174; relaxed arm, n ¼ 175), 279 (79.9%) completed the month 24. The mean change in BCVA from baseline to month 24 was 3.0 letters (standard deviation, 16.3 letters) in the intensive group and 2.6 letters (standard deviation, 16.3 letters) in the relaxed group, demonstrating noninferiority of the relaxed compared with the intensive treatment (P ¼ 0.99). Similar proportions of both groups achieved 20/40 or better VA (53.5% and 56.6%, respectively; P ¼ 0.92) and 20/200 or worse VA (8.7% and 8.1%, respectively; P ¼ 0.52). Participants in the relaxed group received fewer ranibizumab injections over 24 months (mean, 15.8 [standard deviation, 5.9]) than those in the intensive group (mean, 17 [standard deviation, 6.5]; P ¼ 0.001). Significantly more participants in the intensive group never extended beyond 4-week treatment intervals (13.5%) than in the relaxed group (2.8%; P ¼ 0.003), and significantly more participants in the relaxed group extended to and maintained 12-week treatment intervals (29.6%) than the intensive group (15.0%; P ¼ 0.005).Conclusions: Patients treated with a ranibizumab T&E protocol who tolerated some SRF achieved VA that is comparable, with fewer injections, with that achieved when treatment aimed to resolve all SRF completely.
Myopia is an increasingly common condition that is associated with significant costs to individuals and society. Moreover, myopia is associated with increased risk of glaucoma, retinal detachment and myopic maculopathy, which in turn can lead to blindness. It is now well established that spending more time outdoors during childhood lowers the risk of developing myopia and may delay progression of myopia. There has been great interest in further exploring this relationship and exploiting it as a public health intervention aimed at preventing myopia in children. However, spending more time outdoors can have detrimental effects, such as increased risk of melanoma, cataract and pterygium. Understanding how spending more time outdoors prevents myopia could advance development of more targeted interventions for myopia. We reviewed the evidence for and against eight facets of spending time outdoors that may protect against myopia: brighter light, reduced peripheral defocus, higher vitamin D levels, differing chromatic spectrum of light, higher physical activity, entrained circadian rhythms, less near work and greater high spatial frequency (SF) energies. There is solid evidence that exposure to brighter light can reduce risk of myopia. Peripheral defocus is able to regulate eye growth but whether spending time outdoors substantially changes peripheral defocus patterns and how this could affect myopia risk is unclear. Spectrum of light, circadian rhythms and SF characteristics are plausible factors, but there is a lack of solid evidence from human studies. Vitamin D, physical activity and near work appear unlikely to mediate the relationship between time spent outdoors and myopia.
Background: To test the hypothesis that 0.01% atropine eyedrops are a safe and effective myopia-control approach in Australian children.Methods: Children (6-16 years; 49% Europeans, 18% East Asian, 22% South Asian, and 12% other/mixed ancestry) with documented myopia progression were enrolled into this single-centre randomised, parallel, double-masked, placebo-controlled trial and randomised to receive 0.01% atropine (n = 104) or placebo (n = 49) eyedrops (2:1 ratio) instilled nightly over 24 months (mean index age = 12.2 ± 2.5 and 11.2 ± 2.8 years, respectively). Outcome measures were the changes in spherical equivalent (SE) and axial length (AL) from baseline.Samantha Sze-Yee Lee and Gareth Lingham contributed equally to this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.