NASA's Mars Science Laboratory Curiosity rover landed in August 2012 and began experiencing higher rates of wheel damage beginning in October 2013. While the wheels were designed to accumulate considerable damage, the unexpected damage rate raised concerns regarding wheel lifetime. In response, the Jet Propulsion Laboratory developed and deployed mobility flight software on Curiosity that reduces the forces on the wheels. The new algorithm adapts each wheel's speed to fit the terrain topography in real time, by leveraging the rover's measured attitude rates and rocker/bogie suspension angles and rates. Together with a rigid‐body kinematics model, it estimates the real‐time wheel‐terrain contact angles and commands idealized, no‐slip wheel angular rates. In addition, free‐floating “wheelies” are detected and autonomously corrected. Ground test data indicate that the forces on the wheels are reduced by 19% for leading wheels and 11% for middle leading wheels. On the ground, the required data volume increased by up to 129%, and drive duration increased by up to 25%. In flight, data collected over 3.6 km and 149 drives confirmed a reduction in wheel current, correlated with wheel torque, of 18.7%. The new algorithm proved to use fewer resources in flight than ground estimates suggested, as only a 10% increase in drive duration and double the drive data volume were experienced. These data indicate the promise of the new algorithm to extend the life of the wheels for the Curiosity rover. This paper describes the algorithm, its ground testing campaign and associated challenges, and its validation, implementation, and performance in flight.
Ice sintering is a form of metamorphism that drives the microstructural evolution of an aggregate of grains through surface and volume diffusion. This leads to an increase in the grain‐to‐grain contact area (neck) and density of the aggregate over time, resulting in the evolution of its strength, porosity, thermal conductivity, and other properties. This process plays an important role in the evolution of icy planetary surfaces, though its rate and nature are not well constrained. In this study, we explore the model of Swinkels and Ashby (1981, https://doi.org/10.1016/0001-6160%2881%2990154-1) and assess the extent to which it can be used to quantify sintering timescales for water ice. We compare predicted neck growth rates to new and historical observations of ice sintering and find agreement to some studies at the order of magnitude level. First‐order estimates of neck growth timescales on planetary surfaces show that ice may undergo significant modification over geologic timescales, even in the outer solar system. Densification occurs over much longer timescales, suggesting that some surfaces may develop cohesive, but porous, crusts. Sintering rates are extremely sensitive to temperature and grain size, occurring faster in warmer aggregates of smaller grains. This suggests that the microstructural evolution of ices may vary not only throughout the solar system but also spatially across the surface and in the near surface of a given body. Our experimental observations of complex grain growth and mass redistribution in ice aggregates point to components of the model that may benefit from improvement and areas where additional laboratory studies are needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.