Intercalation and deintercalation processes in van der Waals crystals underpin their use in nanoelectronics, energy storage, and catalysis but there remains significant uncertainty regarding these materials’ structural and chemical heterogeneity at the nanoscale. Deintercalation in particular often controls the robustness and cyclability of the involved processes. Here, a detailed analysis of potassium ordering and compositional variations in as‐synthesised K intercalated MoS2 as well an analysis of deintercalation induced changes in the structure and K/Mo elemental composition is presented. By combining 4D scanning transmission electron microscopy (4DSTEM), in situ atomic resolution STEM imaging, selected area electron diffraction (SAED) and energy dispersive X‐ray spectroscopy (EDS) the formation of previously unknown intermediate superstructures during deintercalation is revealed. The results provide evidence supporting a new deintercalation mechanism that favors formation of local regions with thermodynamically stable ordering rather than isotropic release of K. Systematic time‐temperature measurements demonstrate the deintercalation behavior to follow first‐order kinetics, allowing compositional and superstructural changes to be predicted. It is expected that the in situ correlative STEM‐EDS/SAED methodology developed in this work has the potential to determine optimal synthesis, processing and working conditions for a variety of intercalated or pillared materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.