Kumada catalyst-transfer polycondensation (KCTP) has proven to be an excellent strategy toward the synthesis of well-defined conjugated polymers. In this report, Ni(0) species are reacted with surface-bound aryl bromides to yield KCTP initiators of structure (aryl)Ni(II)-Br. Surface-confined Kumada reactions are carried out with a ferrocene functionalized Grignard reagent to quantify initiator coverage, ligand exchange, and Kumada reaction kinetics. In addition, surface-initiated Kumada catalyst-transfer polycondensation (SI-KCTP) is carried out from the fabricated initiators to modify SiO(2) and ITO surfaces. Uniform poly(3-methylthiophene) films with thicknesses between 40 and 65 nm were characterized using a variety of spectroscopic and electrochemical techniques.
In this Article, we describe a method for the polymerization of active esters based on N-hydroxysuccinimide 4-vinyl benzoate (NHS4VB) using surface initiated atom transfer radical polymerization (SI-ATRP). Poly(NHS4VB) brushes have high grafting density and a uniform and smooth morphology, and film thickness increases linearly with reaction time. Block copolymer brushes with 2-hydroxyethyl acrylate, tert-butyl acrylate, and styrene were synthesized from surface bound poly(NHS4VB) macroinitiators. The active ester brushes show rapid and quantitative conversion under aminolysis conditions with primary amines, which was studied using grazing incidence attenuated total reflection Fourier transform infrared (GATR-FTIR) and UV-vis spectroscopy. UV-vis was also used to quantify the amount of reactive groups in polymer brush layers of differing thickness. Functionalization of the active ester pendant groups with chromophores containing primary amines showed a linear correlation between the amount of chromophore incorporated into the brush layer and brush thickness. Grafting densities as high as 25.7 nmol/cm(2) were observed for a 50 nm brush. Block copolymer brushes with buried active ester functional moieties also undergo quantitative conversion with primary amines as confirmed by GATR-FTIR. We discuss the potential of activated ester brushes as universal scaffolds for sensor and microarray surfaces, where the twofold control of functionalizable active ester polymer and block copolymers provides well-ordered, tunable microenvironments.
Palladium-mediated surface-initiated Kumada catalyst transfer polycondensation is used to generate poly(3-methyl thiophene) films with controlled thickness up to 100 nm. The palladium initiator density is measured using cyclic voltammetry and a ferrocene-capping agent, where the surface density is found to be 55% (1.1 × 10(14) molecules per cm(2)). UV-Vis spectroscopy and AFM show increased aggregation in palladium-initiated films due to the higher grafting density of palladium initiators on the surface. The anisotropy of the P3MT films is determined using polarized UV-Vis spectroscopy, which indicates a degree of orientation perpendicular to the substrate. Evidence that palladium can maintain π-complexation even at elevated temperatures, is also shown through the exclusive intramolecular coupling of both a phenyl and thiophene-based magnesium bromide with different dihaloarenes.
In this article, a methacrylate-based spiropyran-containing copolymer was used as a colorimetric sensor to identify multiple metal ions simultaneously. Through UV-vis absorption spectroscopy, the relative binding affinity of merocyanine to each metal ion was investigated by displacement studies of a bound metal ion with a second metal ion of a higher binding affinity. We also show that because each metal ion gives rise to a distinct spectral response, partial least-squares discriminant analysis (PLS-DA) can be used to analyze the UV-vis absorbance spectra to identify the two metal ions that are present in solution at varying concentrations simply by dipping a coated polymer substrate into solution after irradiation. Partial least-squares regression analysis (PLS) was used to determine the metal ions in solution for several binary mixtures quantitatively. We also demonstrate that the quantitative determination depends on the relative binding preference of merocyanine to each metal ion.
The kinetics of aminolysis between two different active ester polymer brush platforms, poly(4-pentafluorophenyl acrylate) (poly(PFPA)) and poly(N-hydroxysuccinimide-4-vinyl benzoate) (poly(NHS4VB)), are compared using primary and aromatic amines with varying reactivity toward postpolymerization modification. UV−vis was used to monitor the aminolysis of both brush platforms with 1-aminomethylpyrene (AMP), 1-aminopyrene (AP), and Ru-(bpy) 2 (phen-5-NH 2 )(PF 6 ) (Ru 2+ A). Using a pseudo-firstorder kinetics model, the pseudo-first-order rate constant (k′) was calculated for each system. The k′ of poly(PFPA) modified with AMP, AP, and Ru 2+ A were 2.46 × 10 −1 , 5.11 × 10 −3 , and 2.59 × 10 −3 s −1 , respectively, while poly(NHS4VB) can only be functionalized with the alkyl amine, albeit at a slower rate constant, k′ of 3.49 × 10 −3 s −1 , compared to that of poly(PFPA) with AMP. The kinetics of surface-initiated photopolymerization of PFPA from oxide surfaces was also investigated as an effective method to control grafting density and film thickness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.