Crystal structure prediction for organic molecules requires both the fast assessment of thousands to millions of crystal structures and the greatest possible accuracy in their relative energies. We describe a crystal lattice simulation program, DMACRYS, emphasizing the features that make it suitable for use in crystal structure prediction for pharmaceutical molecules using accurate anisotropic atom-atom model intermolecular potentials based on the theory of intermolecular forces. DMACRYS can optimize the lattice energy of a crystal, calculate the second derivative properties, and reduce the symmetry of the spacegroup to move away from a transition state. The calculated terahertz frequency k = 0 rigid-body lattice modes and elastic tensor can be used to estimate free energies. The program uses a distributed multipole electrostatic model (Q, t = 00,...,44s) for the electrostatic fields, and can use anisotropic atom-atom repulsion models, damped isotropic dispersion up to R(-10), as well as a range of empirically fitted isotropic exp-6 atom-atom models with different definitions of atomic types. A new feature is that an accurate model for the induction energy contribution to the lattice energy has been implemented that uses atomic anisotropic dipole polarizability models (alpha, t = (10,10)...(11c,11s)) to evaluate the changes in the molecular charge density induced by the electrostatic field within the crystal. It is demonstrated, using the four polymorphs of the pharmaceutical carbamazepine C(15)H(12)N(2)O, that whilst reproducing crystal structures is relatively easy, calculating the polymorphic energy differences to the accuracy of a few kJ mol(-1) required for applications is very demanding of assumptions made in the modelling. Thus DMACRYS enables the comparison of both known and hypothetical crystal structures as an aid to the development of pharmaceuticals and other speciality organic materials, and provides a tool to develop the modelling of the intermolecular forces involved in molecular recognition processes.
We report on the organization and outcome of the fourth blind test of crystal structure prediction, an international collaborative project organized to evaluate the present state in computational methods of predicting the crystal structures of small organic molecules. There were 14 research groups which took part, using a variety of methods to generate and rank the most likely crystal structures for four target systems: three single-component crystal structures and a 1:1 cocrystal. Participants were challenged to predict the crystal structures of the four systems, given only their molecular diagrams, while the recently determined but as-yet unpublished crystal structures were withheld by an independent referee. Three predictions were allowed for each system. The results demonstrate a dramatic improvement in rates of success over previous blind tests; in total, there were 13 successful predictions and, for each of the four targets, at least two groups correctly predicted the observed crystal structure. The successes include one participating group who correctly predicted all four crystal structures as their first ranked choice, albeit at a considerable computational expense. The results reflect important improvements in modelling methods and suggest that, at least for the small and fairly rigid types of molecules included in this blind test, such calculations can be constructively applied to help understand crystallization and polymorphism of organic molecules.
We report a multistage lattice energy minimization methodology for generating stable packing arrangements of cocrystals containing flexible molecules. In the first approximation, the intermolecular electrostatic interactions are modeled with atomic charges and the molecular deformation energy is interpolated over a set of precomputed quantum mechanical values. At subsequent stages, the accuracy is improved by first using analytically rotated and then conformation-dependent multipole moments, computed from the isolated-molecule charge density, and "on-the-fly" quantum mechanical calculations to compute the intramolecular deformation energy. This multistage approach increases the efficiency of the search and establishes the molecule-dependent error due to the atomic charge representation of the charge density and the neglect of the conformational dependence of atomic multipole moments. The methodology is used to study the lattice energy landscapes of the cocrystals of 4-aminobenzoic acid with 2,2'-bipyridine and 4-nitrophenylacetic acid, as well as the single-component crystals. All single-component, experimentally determined crystal structures within the scope of the search were found at, or very close to, the global minimum. The experimental cocrystal with 2,2'-bipyridine is also predicted to be among the most stable packing arrangements. On the contrary, the lattice energy landscape of the cocrystal with 4-nitrophenylacetic acid contains several low energy structures that are more stable than the experimentally observed form and have different hydrogen bonding motifs. Overall, the methodology can provide worthwhile crystal energy landscapes for multicomponent organic solids and thereby contribute to understanding cocrystal formation.
A cocrystal is only expected to form if it is thermodynamically more stable than the crystals of its components. To test whether this can be predicted with a current computational methodology, we compare the lattice energies of 12 cocrystals of 4-aminobenzoic acid, 8 of succinic acid and 6 of caffeine, with the sums of the lattice energies of their components. These three molecules were chosen for their potential use in pharmaceutical cocrystals and because they had sufficient determinations of cocrystals and corresponding partner crystal structures in the Cambridge Structural Database. The lattice energies were evaluated using anisotropic intermolecular atom−atom potentials, with the electrostatic model and the intramolecular energy penalty for changes in specified torsion angles derived from ab initio calculations on the isolated molecules. The majority of the cocrystals are calculated to be more stable than their components, but the energy difference is only large in a few of the cases where the partner molecule cannot hydrogen bond to itself. More typically, the cocrystal stabilization is comparable to polymorphic energy differences and some of the specifically identified errors in the computational modeling. The cocrystals will be more stable relative to the observed disordered structures of caffeine and the kinetically preferred polymorph of 4-aminobenzoic acid, highlighting kinetic factors that may be involved in cocrystal formation. Overall, it appears that cocrystal formation should generally be predictable by comparing the relative stability of the most stable cocrystal and its pure components found on the computed crystal energy landscapes, but this is often very demanding of the accuracy of the method used to calculate the crystal energy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.