This investigation examined the impact of Montmorency tart cherry concentrate (MC) on physiological indices of oxidative stress, inflammation and muscle damage across 3 days simulated road cycle racing. Trained cyclists (n = 16) were divided into equal groups and consumed 30 mL of MC or placebo (PLA), twice per day for seven consecutive days. A simulated, high-intensity, stochastic road cycling trial, lasting 109 min, was completed on days 5, 6 and 7. Oxidative stress and inflammation were measured from blood samples collected at baseline and immediately pre- and post-trial on days 5, 6 and 7. Analyses for lipid hydroperoxides (LOOH), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), interleukin-8 (IL-8), interleukin-1-beta (IL-1-β), high-sensitivity C-reactive protein (hsCRP) and creatine kinase (CK) were conducted. LOOH (p < 0.01), IL-6 (p < 0.05) and hsCRP (p < 0.05) responses to trials were lower in the MC group versus PLA. No group or interaction effects were found for the other markers. The attenuated oxidative and inflammatory responses suggest MC may be efficacious in combating post-exercise oxidative and inflammatory cascades that can contribute to cellular disruption. Additionally, we demonstrate direct application for MC in repeated days cycling and conceivably other sporting scenario’s where back-to-back performances are required.
This study investigated Montmorency tart cherry concentrate (MC) supplementation on markers of recovery following prolonged, intermittent sprint activity. Sixteen semi-professional, male soccer players, who had dietary restrictions imposed for the duration of the study, were divided into two equal groups and consumed either MC or placebo (PLA) supplementation for eight consecutive days (30 mL twice per day). On day 5, participants completed an adapted version of the Loughborough Intermittent Shuttle Test (LISTADAPT). Maximal voluntary isometric contraction (MVIC), 20 m Sprint, counter movement jump (CMJ), agility and muscle soreness (DOMS) were assessed at baseline, and 24, 48 and 72 h post-exercise. Measures of inflammation (IL-1-β, IL-6, IL-8, TNF-α, hsCRP), muscle damage (CK) and oxidative stress (LOOH) were analysed at baseline and 1, 3, 5, 24, 48 and 72 h post-exercise. Performance indices (MVIC, CMJ and agility) recovered faster and muscle soreness (DOMS) ratings were lower in the MC group (p < 0.05). Additionally, the acute inflammatory response (IL-6) was attenuated in the MC group. There were no effects for LOOH and CK. These findings suggest MC is efficacious in accelerating recovery following prolonged, repeat sprint activity, such as soccer and rugby, and lends further evidence that polyphenol-rich foods like MC are effective in accelerating recovery following various types of strenuous exercise.
(2015) Recovery facilitation with Montmorency cherries following high-intensity, metabolically challenging exercise. Applied Physiology, Nutrition, and Metabolism, 40 (4 Northumbria University has developed Northumbria Research Link (NRL) to enable users to access the University's research output. Copyright © and moral rights for items on NRL are retained by the individual author(s) and/or other copyright owners. Single copies of full items can be reproduced, displayed or performed, and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided the authors, title and full bibliographic details are given, as well as a hyperlink and/or URL to the original metadata page. The content must not be changed in any way. Full items must not be sold commercially in any format or medium without formal permission of the copyright holder. The full policy is available online: http://nrl.northumbria.ac.uk/policies.html This document may differ from the final, published version of the research and has been made available online in accordance with publisher policies. To read and/or cite from the published version of the research, please visit the publisher's website (a subscription may be required.) performance was examined following a bout of high intensity stochastic cycling. Trained cyclists (n = 33 16) were equally divided into 2 groups (MC or isoenergetic placebo [PLA]) and consumed 30 mL of 34 supplement, twice per day for eight consecutive days. On the fifth day of supplementation, 35 participants completed a 109 minute cycling trial designed to replicate road race demands. 36Functional performance (maximum voluntary isometric contraction [MVIC], cycling efficiency, 6-37 second peak cycling power) and delayed onset muscle soreness [DOMS] were assessed at baseline,
Cold-water immersion (CWI) is a popular recovery intervention after exercise. The scientific rationale is not clear, and there are no clear guidelines for its use. The aim of this review was to study the physiological and biochemical effect of short periods of CWI. A computer-based literature search, citation tracking and related articles searches were undertaken. Primary research studies using healthy human participants, immersed in cold water (<15 degrees C), for 5 min durations or less were included. Data were extracted on body temperature, cardiovascular, respiratory and biochemical response. 16 studies were included. Sample size was restricted, and there was a large degree of study heterogeneity. CWI was associated with an increase in heart rate, blood pressure, respiratory minute volume and metabolism. Decreases in end tidal carbon dioxide partial pressure and a decrease in cerebral blood flow were also reported. There was evidence of increases in peripheral catecholamine concentration, oxidative stress and a possible increase in free-radical-species formation. The magnitude of these responses may be attenuated with acclimatisation. CWI induces significant physiological and biochemical changes to the body. Much of this evidence is derived from full body immersions using resting healthy participants. The physiological and biochemical rationale for using short periods of CWI in sports recovery still remains unclear.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.