We report experimental evidence for three sequential, distinct dynamic regimes in the capillary self-alignment of centimeter-sized foil dies released at large uniaxial offsets from equilibrium. We show that the initial transient wetting regime, along with inertia and wetting properties of the dies, significantly affect the alignment dynamics including the subsequent constant acceleration and damped oscillatory regimes. An analytical force model is proposed that accounts for die wetting and matches quasi-static numerical simulations. Discrepancies with experimental data point to the need for a comprehensive dynamical model to capture the full system dynamics.
This paper reports on the effective use of capillary self-alignment for low-cost and time-efficient assembly of heterogeneous foil components into a smart electronic identification label. Particularly, we demonstrate the accurate (better than 50 μm) alignment of cm-sized functional foil dies. We investigated the role played by the assembly liquid, by the size and the weight of assembling dies and by their initial offsets in the self-alignment performance. It was shown that there is a definite range of initial offsets allowing dies to align with high accuracy and within approximately the same time window, irrespective of their initial offset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.