The aim of this study was to evaluate the effect of the inclusion of red seaweed supplementation to standard poultry diets on production performance, egg quality, intestinal histology, and cecal short-chain fatty acids in Lohmann Brown Classic laying hens. A total of 160 birds were randomly assigned to 8 treatment groups. Control hens were fed a basal layer diet; positive control hens were fed a diet containing 2% inulin; and 6 treatment groups were fed a diet containing one of the following; 0.5, 1, or 2% Chondrus crispus (CC0.5, CC1, and CC2, respectively) and one of the same 3 levels of Sarcodiotheca gaudichaudii (SG0.5, SG1, and SG2, respectively). Dietary supplementation had no significant effect on the feed intake, BW, egg production, fecal moisture content, and blood serum profile of the birds. The feed conversion ratio per gram of egg was significantly more efficient (P = 0.001) for CC2 and SG2 treatments. Moreover, SG1 supplementation increased egg yolk weight (P = 0.0035) and birds with CC1 supplementation had higher egg weight (P = 0.0006). The SG2 and CC2 groups had greater (P < 0.05) villus height and villus surface area compared with the control birds. Seaweed supplementation increased the abundance of beneficial bacteria [e.g., Bifidobacterium longum (4- to 14-fold), Streptococcus salivarius (4- to 15-fold)] and importantly reduced the prevalence of Clostridium perfringens in the gut of the chicken. Additionally, the concentrations of short-chain fatty acids, including acetic acid, propionic acid, n-butyric acid, and i-butyric acid, were significantly higher (P < 0.05) in CC and SG treatments than in the control. In conclusion, dietary supplementation using red seaweed inclusions can act as a potential prebiotic to improve performance, egg quality, and overall gut health in layer hens.
Codium fragile and Chondrus crispus are, respectively, green and red seaweeds which are abundant along the North Atlantic coasts. We investigated the chemical composition and antiviral activity of enzymatic extracts of C. fragile (CF) and C. crispus (CC). On a dry weight basis, CF consisted of 11% protein, 31% neutral sugars, 0.8% sulfate, 0.6% uronic acids, and 49% ash, while CC contained 27% protein, 28% neutral sugars, 17% sulfate, 1.8% uronic acids, and 25% ash. Enzyme-assisted hydrolysis improved the extraction efficiency of bioactive materials. Commercial proteases and carbohydrases significantly improved (p ≤ 0.001) biomass yield (40%–70% dry matter) as compared to aqueous extraction (20%–25% dry matter). Moreover, enzymatic hydrolysis enhanced the recovery of protein, neutral sugars, uronic acids, and sulfates. The enzymatic hydrolysates exhibited significant activity against Herpes simplex virus (HSV-1) with EC50 of 77.6–126.8 μg/mL for CC and 36.5–41.3 μg/mL for CF, at a multiplicity of infection (MOI) of 0.001 ID50/cells without cytotoxity (1–200 μg/mL). The extracts obtained from proteases (P1) and carbohydrases (C3) were also effective at higher virus MOI of 0.01 ID50/cells without cytotoxity. Taken together, these results indicate the potential application of enzymatic hydrolysates of C. fragile and C. crispus in functional food and antiviral drug discovery.
Food safety of table eggs is vital since many pathogens can contaminate the unfertilized egg, leading to increased risk of foodborne illness for consumers. The eggshell cuticle is the first line of defense to restrict the entry of egg-associated pathogens, such as Salmonella Enteritidis. The thickness and completeness of coverage of the cuticle layer are heritable traits that are strongly associated with egg resistance to bacterial penetration. The present study characterizes the chemical composition of the eggshell cuticle and structure of pore plugs from table eggs. Eggs collected from both brown and white egg laying Lohmann flocks (early, mid, and late lay) were either unwashed or washed. Pore plugs were characterized using scanning electron microscopy (SEM), and elemental composition was determined using energy-dispersive x-ray spectroscopy (EDS). SEM observations confirmed that the plug formed by the cuticle layer within the eggshell pore remains firmly lodged throughout the commercial washing process. The eggshell thickness and cuticle pore length visualized in brown eggs was significantly higher than in white eggs in hens of all ages. EDS analysis revealed that the pore inner surface was enriched in phosphorus and chemically different from the surrounding bulk eggshell mineral. Detailed assessment of the cuticle chemical composition was performed by Fourier transform infrared spectroscopy (FTIR). Washing of eggs removed cuticle from the eggshell surface. There was a trend of lower cuticle coverage with increasing hen age for white eggs. A significant reduction in the amount of proteins and phosphates and polysaccharides was observed in the cuticle of brown unwashed eggs with hen age. In white unwashed eggs, amides and lipids decreased with hen age; by contrast, the amount of sulfate was highest at mid-lay. The results from our research will assist selective breeding programs that target cuticle integrity and pore plug stability to enhance egg resistance to pathogen penetration and improve food safety.
Red seaweeds are a rich source of unique bioactive compounds and secondary metabolites that are known to improve human and animal health. S. Enteritidis is a broad range host pathogen, which contaminates chicken and poultry products that end into the human food chain. Worldwide, Salmonella outbreaks have become an important economic and public health concern. Moreover, the development of resistance in Salmonella serovars toward multiple drugs highlights the need for alternative control strategies. This study evaluated the antimicrobial property of red seaweeds extracts against Salmonella Enteritidis using the Caenorhabditis elegans infection model. Six red seaweed species were tested for their antimicrobial activity against S. Enteritidis and two, Sarcodiotheca gaudichaudii (SG) and Chondrus crispus (CC), were found to exhibit such properties. Spread plate assay revealed that SG and CC (1%, w/v) significantly reduced the growth of S. Enteritidis. Seaweed water extracts (SWE) of SG and CC, at concentrations from 0.4 to 2 mg/ml, significantly reduced the growth of S. Enteritidis (log CFU 4.5–5.3 and log 5.7–6.0, respectively). However, methanolic extracts of CC and SG did not affect the growth of S. Enteritidis. Addition of SWE (0.2 mg/ml, CC and SG) significantly decreased biofilm formation and reduced the motility of S. Enteritidis. Quantitative real-time PCR analyses showed that SWE (CC and SG) suppressed the expression of quorum sensing gene sdiA and of Salmonella Pathogenesis Island-1 (SPI-1) associated genes sipA and invF, indicating that SWE might reduce the invasion of S. Enteritidis in the host by attenuating virulence factors. Furthermore, CC and SG water extracts significantly improved the survival of infected C. elegans by impairing the ability of S. Enteritidis to colonize the digestive tract of the nematode and by enhancing the expression of C. elegans immune responsive genes. As the innate immune response pathways of C. elegans and mammals show a high degree of conservation, these results suggest that these SWE may also impart beneficial effects on animal and human health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.