ATP-binding cassette (ABC) is one of the two major superfamilies of transporters present across the evolutionary scale. ABC superfamily members came to prominence due to their ability to extrude broad spectrum of substrates and to confer multi drug resistance (MDR). Overexpression of some ABC transporters in clinical isolates of Candida species was attributed to the development of MDR phenotypes. Among Candida species, Candida glabrata is an emerging drug resistant species in human fungal infections. A comprehensive analysis of such proteins in C. glabrata is required to untangle their role not only in MDR but also in other biological processes. Bioinformatic analysis of proteins encoded by genome of human pathogenic yeast C. glabrata identified 25 putative ABC protein coding genes. On the basis of phylogenetic analysis, domain organization and nomenclature adopted by the Human Genome Organization (HUGO) scheme, these proteins were categorized into six subfamilies such as Pleiotropic Drug Resistance (PDR)/ABCG, Multi Drug Resistance (MDR)/ABCB, Multi Drug Resistance associated Protein (MRP)/ABCC, Adrenoleukodystrophy protein (ALDp)/ABCD, RNase L Inhibitor (RLI)/ABCE and Elongation Factor 3 (EF3)/ABCF. Among these, only 18 ABC proteins contained transmembrane domains (TMDs) and were grouped as membrane proteins, predominantly belonging to PDR, MDR, MRP, and ALDp subfamilies. A comparative phylogenetic analysis of these ABC proteins with other yeast species revealed their orthologous relationship and pointed towards their conserved functions. Quantitative real time PCR (qRT-PCR) analysis of putative membrane localized ABC protein encoding genes of C. glabrata confirmed their basal expression and showed variable transcriptional response towards antimycotic drugs. This study presents first comprehensive overview of ABC superfamily proteins of a human fungal pathogen C. glabrata, which is expected to provide an important platform for in depth analysis of their physiological relevance in cellular processes and drug resistance.
The present study is an attempt to determine the lipid composition of Candida auris and to highlight if the changes in lipids can be correlated to high drug resistance encountered in C. auris. For this, the comparative lipidomics landscape between drug-susceptible (CBS10913T) and a resistant hospital isolate (NCCPF_470033) of C. auris was determined by employing high throughput mass spectrometry. All major groups of phosphoglycerides (PGL), sphingolipids, sterols, diacylglycerols (DAG) and triacylglycerols (TAG), were quantitated along with their molecular lipid species. Our analyses highlighted several key changes where the NCCPF_470033 showed an increase in PGL content, specifically phosphatidylcholine, phosphatidylglycerol, phosphatidylserine, phosphatidylinositol, and phosphatidylethanolamine; odd chain containing lipids and accumulation of 16:1-DAG and 16:0-DAG; depletion of 18:1-TAG and 18:0-TAG. The landscape of molecular species displayed a distinct imprint between isolates. For example, the levels of unsaturated PGLs, contributed by both odd and even-chain fatty acyls were higher in resistant NCCPF_470033 isolate, resulting in a higher unsaturation index. Notwithstanding, several commonalities of lipid compositional changes between resistant C. auris and other Candida spp., the study could also identify distinguishable changes in specific lipid species in C. auris. Together, the data highlights the modulation of membrane lipid homeostasis associated with drug-resistant phenotype of C. auris.
In this study, we have specifically blocked a key step of sphingolipid (SL) biosynthesis in Candida glabrata by disruption of the orthologs of ScIpt1 and ScSkn1. Based on their close homology with S. cerevisiae counterparts, the proteins are predicted to catalyze the addition of a phosphorylinositol group onto mannosyl inositolphosphoryl ceramide (MIPC) to form mannosyl diinositolphosphoryl ceramide (M(IP)2C), which accounts for the majority of complex SL structures in S. cerevisiae membranes. High throughput lipidome analysis confirmed the accumulation of MIPC structures in ΔCgipt1 and ΔCgskn1 cells, albeit to lesser extent in the latter. Noticeably, ΔCgipt1 cells showed an increased susceptibility to azoles; however, ΔCgskn1 cells showed no significant changes in the drug susceptibility profiles. Interestingly, the azole susceptible phenotype of ΔCgipt1 cells seems to be independent of the ergosterol content. ΔCgipt1 cells displayed altered lipid homeostasis, increased membrane fluidity as well as high diffusion of radiolabeled fluconazole (3H-FLC), which could together influence the azole susceptibility of C. glabrata. Furthermore, in vivo experiments also confirmed compromised virulence of the ΔCgipt1 strain. Contrarily, specific functions of CgSkn1 remain unclear.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.