The COVID-19 pandemic has highlighted the need for new antiviral targets, as many of the currently approved drugs have proven ineffective against mitigating SARS-CoV-2 infections. The host transmembrane serine protease TMPRSS2 is a highly promising antiviral target, as it plays a direct role in priming the spike protein before viral entry occurs. Further, unlike other targets such as ACE2, TMPRSS2 has no known biological role. Here we utilize virtual screening to curate large libraries into a focused collection of potential inhibitors. Optimization of a recombinant expression and purification protocol for the TMPRSS2 peptidase domain facilitates subsequent biochemical screening and characterization of selected compounds from the curated collection in a kinetic assay. In doing so, we demonstrate that serine protease inhibitors camostat, nafamostat, and gabexate inhibit through a covalent mechanism. We further identify new non-covalent compounds as TMPRSS2 protease inhibitors, demonstrating the utility of a combined virtual and experimental screening campaign in rapid drug discovery efforts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.