We report the results of an attempt to reproduce a reported cavity catalysis of the ester hydrolysis of para- nitrophenyl acetate due to vibrational strong coupling. While we achieved the same light–matter coupling strength and detuning, we did not observe the reported ten-fold increase in the reaction rate constant. Furthermore, no obvious detuning dependence was observed. The inconsistency with the reported literature suggests that cavity catalysis is sensitive to experimental details beyond the onset of vibrational strong coupling. This indicates that other important factors are involved and have been overlooked so far. We find that more investigation into the limits, key factors, and mechanisms to reliably actualize cavity modified reactions is needed.
Ultrafast molecular dynamics are frequently extracted from two-dimensional (2D) spectra via the center line slope (CLS) method. The CLS method depends on the accurate determination of frequencies where the 2D signal is at a maximum, and multiple approaches exist for the determination of that maximum. Various versions of peak fitting for CLS analyses have been utilized; however, the impact of peak fitting on the accuracy and precision of the CLS method has not been reported in detail. Here, we evaluate several versions of CLS analyses using both simulated and experimental 2D spectra. The CLS method was found to be significantly more robust when fits were used to extract the maxima, particularly fitting methods that utilize pairs of opposite-sign peaks. However, we also observed that pairs of opposite-signed peaks required more assumptions than single peaks, which are important to check when interpreting experimental spectra using peak pairs.
The increasing number of protein-based metamaterials demands reliable and efficient theoretical and computational methods to study the physicochemical properties they may display. In this regard, we develop a simulation strategy based on Molecular Dynamics (MD) that addresses the geometric degrees of freedom of an auxetic two-dimensional protein crystal. This model consists of a network of impenetrable rigid squares linked through massless rigid rods. Our MD methodology extends the well-known protocols SHAKE and RATTLE to include highly non-linear holonomic and non-holonomic constraints, with an emphasis on collision detection and response between anisotropic rigid bodies. The presented method enables the simulation of long-time dynamics with reasonably large time steps. The data extracted from the simulations allow the characterization of the dynamical correlations featured by the protein subunits, which show a persistent motional interdependence across the array. On the other hand, non-holonomic constraints (collisions between subunits) increase the number of inhomogeneous deformations of the network, thus driving it away from an isotropic response. Our work provides the first long-timescale simulation of the dynamics of protein crystals and offers insights into promising mechanical properties afforded by these materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.