Two natural auxins, phenylacetic acid (PAA) and indole-3-acetic acid (IAA), play crucial roles in plant growth and development. One route of IAA biosynthesis uses the glucosinolate intermediate indole-3-acetaldoxime (IAOx) as a precursor, which is thought to occur only in glucosinolate-producing plants in Brassicales. A recent study showed that overproducing phenylacetaldoxime (PAOx) in Arabidopsis increases PAA production. However, it remains unknown whether this increased PAA resulted from hydrolysis of PAOx-derived benzyl glucosinolate or, like IAOx-derived IAA, is directly converted from PAOx. If glucosinolate hydrolysis is not required, aldoxime-derived auxin biosynthesis may occur beyond Brassicales.To better understand aldoxime-derived auxin biosynthesis, we conducted an isotopelabelled aldoxime feeding assay using an Arabidopsis glucosinolate-deficient mutant sur1 and maize, and transcriptomics analysis.Our study demonstrated that the conversion of PAOx to PAA does not require glucosinolates in Arabidopsis. Furthermore, maize produces PAA and IAA from PAOx and IAOx, respectively, indicating that aldoxime-derived auxin biosynthesis also occurs in maize.Considering that aldoxime production occurs widely in the plant kingdom, aldoximederived auxin biosynthesis is likely to be more widespread than originally believed. A genomewide transcriptomics study using PAOx-overproduction plants identified complex metabolic networks among IAA, PAA, phenylpropanoid and tryptophan metabolism.
Mycosporine-like amino acids (MAAs) are a family of natural products that are produced by a variety of organisms for protection from ultraviolet damage. In this work, we combined different bioinformatic approaches to assess the distribution of the MAA biosynthesis and identified a putative gene cluster from Nostoc linckia NIES-25 that encodes a short-chain dehydrogenase/ reductase and a nonheme iron(II)-and 2-oxoglutarate-dependent oxygenase (MysH) as potential new biosynthetic enzymes. Heterologous expression of refactored gene clusters in E. coli produced two known biosynthetic intermediates, 4-deoxygadusol and mycosporine-glycine, and three disubstituted MAA analogues, porphyra-334, shinorine, and mycosporine-glycine-alanine. Importantly, the disubstituted MAAs were converted into palythines by MysH. Furthermore, biochemical characterization revealed the substrate preference of recombinant MysD, a D-Ala-D-Ala ligase-like enzyme for the formation of disubstituted MAAs. Our study advances the biosynthetic understanding of an important family of natural UV photoprotectants and opens new opportunities to the development of next-generation sunscreens.
Ribosomally synthesized and post-translationally modified peptides (RiPPs) compose a large structurally and functionally diverse family of natural products. The biosynthesis system of RiPPs typically involves a precursor peptide comprising of a leader and core motif and nearby processing enzymes that recognize the leader and act on the core for producing modified peptides. Interest in RiPPs has increased substantially in recent years as improvements in genome mining techniques have dramatically improved access to these peptides and biochemical and engineering studies have supported their applications. A less understood, intriguing feature in the RiPPs biosynthesis is the precursor peptides of multiple RiPPs families produced by bacteria, fungi and plants carrying multiple core motifs, which we term “multicore”. Herein, we present the prevalence of the multicore systems, their biosynthesis and engineering for applications.
Peptidic natural products (PNPs) represent a rich source of lead compounds for the discovery and development of therapeutic agents for the treatment of a variety of diseases. However, the chemical synthesis of PNPs with diverse modifications for drug research is often faced with significant challenges, including the unavailability of constituent nonproteinogenic amino acids, inefficient cyclization protocols, and poor compatibility with other functional groups. Advances in the understanding of PNP biosynthesis and biocatalysis provide a promising, sustainable alternative for the synthesis of these compounds and their analogues. Here we discuss current progress in using native and engineered biosynthetic enzymes for the production of both ribosomally and nonribosomally synthesized peptides. In addition, we highlight new in vitro and in vivo approaches for the generation and screening of PNP libraries.
Scutellaria is a genus of plants containing multiple species with well‐documented medicinal effects. S. baicalensis and S. barbata are among the best‐studied Scutellaria species, and previous works have established flavones to be the primary source of their bioactivity. Recent genomic and biochemical studies with S. baicalensis and S. barbata have advanced our understanding of flavone biosynthesis in Scutellaria . However, as over several hundreds of Scutellaria species occur throughout the world, flavone biosynthesis in most species remains poorly understood. In this study, we analyzed organ‐specific flavone profiles of seven Scutellaria species, including S. baicalensis , S. barbata , and two species native to the Americas ( S. wrightii to Texas and S. racemosa to Central and South America). We found that the roots of almost all these species produce only 4′‐deoxyflavones, while 4′‐hydroxyflavones are accumulated exclusively in their aerial parts. On the other hand, S. racemosa and S. wrightii also accumulated high levels of 4′‐deoxyflavones in their aerial parts, different with the flavone profiles of S. baicalensis and S. barbata . Furthermore, our metabolomics and NMR study identified the accumulation of isoscutellarein 8‐ O ‐β‐glucuronopyranoside, a rare 4′‐hydroxyflavone, in the stems and leaves of several Scutellaria species including S. baicalensis and S. barbata , but not in S. racemosa and S. wrightii . Distinctive organ‐specific metabolite profiles among Scutellaria species indicate the selectivity and diverse physiological roles of flavones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.