Language impairments are a characteristic feature of autism and related autism spectrum disorders (ASDs). Autism is also highly heritable and one of the most promising candidate genes implicated in its pathogenesis is contactin-associated protein-like 2 (CNTNAP2), a gene also associated with language impairment. In the current study we investigated the functional effects of variants of CNTNAP2 associated with autism and language impairment (rs7794745 and rs2710102; presumed risk alleles T and C, respectively) in healthy individuals using functional magnetic resonance imaging (fMRI) during performance of a language task (n = 66). Against a background of normal performance and lack of behavioral abnormalities, healthy individuals with the putative risk allele versus those without demonstrated significant increases in activation in the right inferior frontal gyrus (Broca's area homologue) and right lateral temporal cortex. These findings demonstrate that risk associated variation in the CNTNAP2 gene impacts on brain activation in healthy non-autistic individuals during a language processing task providing evidence of the effect of genetic variation in CNTNAP2 on a core feature of ASDs.
A number of prominent theories have linked tendencies to mimick others' facial movements to empathy and facial emotion recognition, but evidence for such links is uneven. We conducted a meta-analysis of correlations of facial mimicry with empathy and facial emotion recognition skills. Other factors were also examined for moderating influence, e.g. facets of empathy measured, facial muscles recorded, and facial emotions being mimicked. Summary effects were estimated with a random-effects model and a meta-regression analysis was used to identify factors moderating these effects. 162 effects from 28 studies were submitted. The summary effect size indicated a significant weak positive relationship between facial mimicry and empathy, but not facial emotion recognition. The moderator analysis revealed that stronger correlations between facial mimicry and empathy were observed for static vs. dynamic facial stimuli, and for implicit vs. explicit instances of facial emotion processing. No differences were seen between facial emotions, facial muscles, emotional and cognitive facets of empathy, or state and trait measures of empathy. The results support the claim that stronger facial mimicry responses are positively related to higher dispositions for empathy, but the weakness and variability of this effect suggest that this relationship is conditional on not-fully understood factors.
As social animals, we regularly act in the interest of others by making decisions on their behalf. These decisions can take the form of choices between smaller short-term rewards and larger long-term rewards, and can be effectively indexed by temporal discounting (TD). In a TD paradigm, a reward loses subjective value with increasing delay presumably because it becomes more difficult to simulate how much the recipient (e.g., future self) will value it. If this is the case, then the value of delayed rewards should be discounted even more steeply when we are choosing for someone whose feelings we do not readily simulate, such as socially distant strangers. Second, the ability to simulate shows individual differences and is indexed by trait empathy. We hypothesized that individuals high in trait empathy will more readily simulate, and hence discount less steeply for distant others, compared to those who are low on trait empathy. To test these predictions, we asked 63 participants from the general population to perform a TD task from the perspectives of close and distant others, as well as their own. People were found to discount less steeply for themselves, and the steepness of TD increased with increasing distance from self. Additionally, individuals who scored high in trait empathy were found to discount less steeply for distant others compared to those who scored low. These findings confirm the role of empathy in determining how we choose rewards for others.
One route to understanding the thoughts and feelings of others is by mentally putting one's self in their shoes and seeing the world from their perspective, i.e., by simulation. Simulation is potentially used not only for inferring how others feel, but also for predicting how we ourselves will feel in the future. For instance, one might judge the worth of a future reward by simulating how much it will eventually be enjoyed. In intertemporal choices between smaller immediate and larger delayed rewards, it is observed that as the length of delay increases, delayed rewards lose subjective value; a phenomenon known as temporal discounting. In this article, we develop a theoretical framework for the proposition that simulation mechanisms involved in empathizing with others also underlie intertemporal choices. This framework yields a testable psychological account of temporal discounting based on simulation. Such an account, if experimentally validated, could have important implications for how simulation mechanisms are investigated, and makes predictions about special populations characterized by putative deficits in simulating others.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.