Tree leaf mass is a small, highly variable, but critical, component of forest ecosystems. Estimating leaf mass on standing trees with models is challenging because leaf mass varies both within and between tree species and at different locations and points in time. Typically, models for estimating tree leaf mass are species specific, empirical models that predict intraspecific variation from stem diameter at breast height (dbh). Such models are highly limited in their application because there are many other factors beyond tree girth and species that cause leaf mass to vary and because such models provide no way to predict leaf mass for species for which data are not available. We conducted destructive sampling of 17 different species in Michigan, covering multiple life history traits and sizes, to investigate the potential for using a single, “trans‐species” model for predicting leaf mass for all the trees in our study. Our results show the most important predictors of tree leaf mass are dbh, five‐year basal area increment, crown class, and competition index, none of which are species specific. Species‐specific variation could be captured by leaf longevity and shade tolerance. Wood specific gravity was a statistically significant, but marginally important predictor. Together, these variables describing tree size, life‐history traits, and competitive environment allowed us to develop a generalized leaf mass model applicable to a diverse set of species, without having to develop species‐specific equations.
Small area estimation is a growing area of research for making inferences over geographic, demographic, or temporal domains smaller than those in which a particular survey data set was originally intended to be used. We aimed to review a body of literature to summarize the breadth and depth of small area estimation and related estimation strategies in forest inventory and management to-date, as well as the current state of terminology, methods, concerns, data sources, research findings, challenges, and opportunities for future work relevant to forestry and forest inventory research. Estimation methodologies explored include direct, indirect, and composite estimation within design-based and model-based inference bases. A variety of estimation methods in forestry have been applied to extensive multi-resource inventory systems like national forest inventories to increase the precision of estimates on small domains or subsets of the overall populations of interest. To avoid instability and large variances associated with small sample sizes when working with small area domains, forest inventory data are often supplemented with information from auxiliary sources, especially from remote sensing platforms and other geospatial, map-based products. Results from many studies show gains in precision compared to direct estimates based only on field inventory data. Gains in precision have been demonstrated in both project-level applications and national forest inventory systems. Potential gains are possible over varying geographic and temporal scales, with the degree of success in reducing variance also dependent on the types of auxiliary information, scale, strength of model relationships, and methodological alternatives, leaving considerable opportunity for future research and growth in small area applications for forest inventory.
Many National Forest Inventory (NFI) stakeholders would benefit from accurate estimates at finer geographic scales than most currently implemented in operational estimates using NFI sample data. In the past decade small area estimation techniques have been shown to increase precision in forest inventory estimates by combining field observations and remote-sensing. We sought to demonstrate the potential for improving the precision of forest inventory growing stock volume estimates for counties in United States of North Carolina, Tennessee, and Virginia, by pairing canopy height models from digital aerial photogrammetry (DAP) and field plot data from the United States NFI. Area-level Fay-Herriot estimators were used to avoid the need for precise (GPS) coordinates of field plots. Reductions in standard errors averaging 30% for North Carolina county estimates were observed, with 19% average reductions in standard errors in both Tennessee and Virginia. Accounting for spatial autocorrelation among adjacent counties provided further gains in precision when the three states were treated as a single forest land population; however, analyses conducted one state at a time showed that good results could be achieved without accounting for spatial autocorrelation. Apparent gains in sample sizes ranged from about 65% in Virginia to 128% in North Carolina, compared to the current number of inventory plots. Results should allow for determining whether acquisition of statewide DAP would be cost-effective as a means for increasing the accuracy of county-level forest volume estimates in the United States NFI.
Estimating tree leaf biomass can be challenging in applications where predictions for multiple tree species is required. This is especially evident where there is limited or no data available for some of the species of interest. Here we use an extensive national database of observations (61 species, 3628 trees) and formulate models of varying complexity, ranging from a simple model with diameter at breast height (DBH) as the only predictor to more complex models with up to 8 predictors (DBH, leaf longevity, live crown ratio, wood specific gravity, shade tolerance, mean annual temperature, and mean annual precipitation), to estimate tree leaf biomass for any species across the continental United States. The most complex with all eight predictors was the best and explained 74%-86% of the variation in leaf mass. Consideration was given to the difficulty of measuring all of these predictor variables for model application, but many are easily obtained or already widely collected. Because most of the model variables are independent of species and key species-level variables are available from published values, our results show that leaf biomass can be estimated for new species not included in the data used to fit the model. The latter assertion was evaluated using a novel "leave-one-species-out" crossvalidation approach, which showed that our chosen model performs similarly for species used to calibrate the model, as well as those not used to develop it. The models exhibited a strong bias toward overestimation for a relatively small subset of the trees. Despite these limitations, the models presented here can provide leaf biomass estimates for multiple species over large spatial scales and can be applied to new species or species with limited leaf biomass data available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.