Hibberd TJ, Kestell GR, Kyloh MA, Brookes SJ, Wattchow DA, Spencer NJ. Identification of different functional types of spinal afferent neurons innervating the mouse large intestine using a novel CGRP␣ transgenic reporter mouse. Am J Physiol Gastrointest Liver Physiol 310: G561-G573, 2016. First published January 28, 2016 doi:10.1152/ajpgi.00462.2015.-Spinal afferent neurons detect noxious and physiological stimuli in visceral organs. Five functional classes of afferent terminals have been extensively characterized in the colorectum, primarily from axonal recordings. Little is known about the corresponding somata of these classes of afferents, including their morphology, neurochemistry, and electrophysiology. To address this, we made intracellular recordings from somata in L 6/S1 dorsal root ganglia and applied intraluminal colonic distensions. A transgenic calcitonin gene-related peptide-␣ (CGRP␣)-mCherry reporter mouse, which enabled rapid identification of soma neurochemistry and morphology following electrophysiological recordings, was developed. Three distinct classes of low-threshold distension-sensitive colorectal afferent neurons were characterized; an additional group was distension-insensitive. Two of three low-threshold classes expressed CGRP␣. One class expressing CGRP␣ discharged phasically, with inflections on the rising phase of their action potentials, at low frequencies, to both physiological (Ͻ30 mmHg) and noxious (Ͼ30 mmHg) distensions. The second class expressed CGRP␣ and discharged tonically, with smooth, briefer action potentials and significantly greater distension sensitivity than phasically firing neurons. A third class that lacked CGRP␣ generated the highest-frequency firing to distension and had smaller somata. Thus, CGRP␣ expression in colorectal afferents was associated with lower distension sensitivity and firing rates and larger somata, while colorectal afferents that generated the highest firing frequencies to distension had the smallest somata and lacked CGRP␣. These data fill significant gaps in our understanding of the different classes of colorectal afferent somata that give rise to distinct functional classes of colorectal afferents. In healthy mice, the majority of sensory neurons that respond to colorectal distension are low-threshold, wide-dynamic-range afferents, encoding both physiological and noxious ranges. colon; afferent; nociceptor; pain; sensory neuron IN MAMMALS, SPINAL AFFERENT neurons, with somata in dorsal root ganglia (DRG), encode noxious and physiological sensory stimuli in visceral organs. Most recordings from spinal afferents have been obtained via extracellular recording of nerve trunks containing a mix of different types of efferent and afferent nerve axons (12,27,33). In the large intestine of mice, extracellular recordings have been used to generate a classification scheme consisting of approximately five different functional types of colorectal afferents (5, 16). Numerous studies also report characteristics of colorectal-projecting spinal afferent som...
In mice dorsal root ganglia (DRG), some neurons express calcitonin gene-related peptide (CGRP) without substance P (SP; CGRP(+) SP(-) ). The projections and functions of these neurons are unknown. Therefore, we combined in vitro axonal tracing with multiple-labeling immunohistochemistry to neurochemically define these neurons and characterize their peripheral and central projections. Cervical spinal cord, DRG, and forepaw skin were removed from C57Bl/6 mice and multiple-labeled for CGRP, SP, and either marker for the sensory neuron subpopulations transient receptor potential vanilloid type 1 (TRPV1), neurofilament 200 (NF200), or vesicular glutamate transporter 2 (VGluT1). To determine central projections of CGRP(+) SP(-) neurons, Neurobiotin (NB) was applied to the C7 ventral ramus and visualized in DRG and spinal cord sections colabeled for CGRP and SP. Half (50%) of the CGRP-immunoreactive DRG neurons lacked detectable SP and had a mean soma size of 473 ± 14 μm(2) (n = 5); 89% of the CGRP(+) SP(-) neurons expressed NF200 (n = 5), but only 32% expressed TRPV1 (n = 5). Cutaneous CGRP(+) SP(-) fibers were numerous within dermal papillae and around hair shafts (n = 4). CGRP(+) SP(-) boutons were prevalent in lateral lamina I and in lamina IV/V of the dorsal horn (n = 5). NB predominantly labeled fibers penetrating lamina IV/V, 6 ± 3% contained CGRP (n = 5), and 21 ± 2% contained VGluT1 (n = 3). CGRP(+) SP(-) afferent neurons are likely to be non-nociceptive. Their soma size, neurochemical profile, and peripheral and central targets suggest that CGRP(+) SP(-) neurons are polymodal mechanoceptors.
The role of calcitonin gene-related peptide (CGRP) in visceral and somatic nociception is incompletely understood. CGRPα is highly expressed in sensory neurons of dorsal root ganglia and particularly in neurons that also express the transient receptor potential cation channel subfamily V member 1 (Trpv1). Therefore, we investigated changes in visceral and somatic nociception following deletion of CGRPα from the Trpv1-Cre population using the Cre/lox system. In control mice, acetic acid injection (0.6%, ip) caused significant immobility (time stationary), an established indicator of visceral pain. In CGRPα-mCherry;Trpv1-Cre mice, the duration of immobility was significantly less than controls, and the distance CGRPα-mCherry;Trpv1-Cre mice traveled over 20 min following acetic acid was significantly greater than controls. However, following acetic acid injection, there was no difference between genotypes in the writhing reflex, number of abdominal licks, or forepaw wipes of the cheek. CGRPα-mCherry;Trpv1-Cre mice developed more pronounced inflammation-induced heat hypersensitivity above baseline values compared with controls. However, analyses of noxious acute heat or cold transmission revealed no difference between genotypes. Also, odor avoidance test, odor preference test, and buried food test for olfaction revealed no differences between genotypes. Our findings suggest that CGRPα-mediated transmission within the Trpv1-Cre population plays a significant role in visceral nociceptive pathways underlying voluntary movement. Monitoring changes in movement over time is a sensitive parameter to identify differences in visceral nociception, compared with writhing reflexes, abdominal licks, or forepaw wipes of the cheek that were unaffected by deletion of CGRPα- from Trpv1-Cre population and likely utilize different mechanisms. NEW & NOTEWORTHY The neuropeptide calcitonin gene-related peptide (CGRP) is highly colocalized with transient receptor potential cation channel subfamily V member 1 (TRPV1)-expressing primary afferent neurons, but the functional role of CGRPα specifically in these neurons is unknown in pain processing from visceral and somatic afferents. We used cre-lox recombination to conditionally delete CGRPα from TRPV1-expressing neurons in mice. We show that CGRPα from within TRPV1-cre population plays an important role in visceral nociception but less so in somatic nociception.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.