Improving the temporal resolution of single photon detectors has an impact on many applications 1 , such as increased data rates and transmission distances for both classical 2 and quantum 3-5 optical communication systems, higher spatial resolution in laser ranging and observation of shorter-lived fluorophores in biomedical imaging 6 . In recent years, superconducting nanowire single-photon detectors 7,8 (SNSPDs) have emerged as the highest efficiency time-resolving single-photon counting detectors available in the near infrared 9 . As the detection mechanism in SNSPDs occurs on picosecond time scales 10 , SNSPDs have been demonstrated with exquisite temporal resolution below 15 ps [11][12][13][14][15] . We reduce this value to 2.7±0.2 ps at 400 nm and 4.6±0.2 ps at 1550 nm, using a specialized niobium nitride (NbN) SNSPD. The observed photon-energy dependence of the temporal resolution and detection latency suggests that intrinsic effects make a significant contribution.Temporal resolution in SNSPDs, commonly referred to as jitter, is characterized by the width of the temporal distribution of signal outputs with respect to the photon arrival times. This statistical distribution is known as the instrument response function (IRF), and its width is commonly evaluated as
Zero-mode waveguides (ZMW) have the potential to be powerful confinement tools for studying electron transfer dynamics at single molecule occupancy conditions. Flavin mononucleotide contains an isoalloxazine chromophore, which is fluorescent in the oxidized state (FMN) while the reduced state (FMNH2) exhibits dramatically lower light emission, i.e. a dark-state. This allows fluorescence emission to report the redox state of single FMN molecules, an observation that has been used previously to study single electron transfer events in surface-immobilized flavins and flavoenzymes, e.g. sarcosine oxidase, by direct wide-field imaging of ZMW arrays. Single molecule electron transfer dynamics have now been extended to the study of freely diffusing molecules using fluorescence measurements of Au ZMWs under single occupancy conditions. The Au in the ZMW serves both as an optical cladding layer and as the working electrode for potential control, thereby accessing single molecule electron transfer dynamics at μM concentrations. Consistent with expectations, the probability of observing single reduced molecules increases as the potential is scanned negative, E(appl) < E(eq), and the probability of observing emitting oxidized molecules increases at E(appl) > E(eq). Different single molecules exhibit different electron transfer properties as reflected in the position of E(eq) and the distribution of E(eq) among a population of FMN molecules. Two types of actively-controlled electroluminescence experiments were used: chronofluorometry experiments, in which the potential is alternately stepped between oxidizing and reducing potentials, and cyclic potential sweep fluorescence experiments, analogous to cyclic voltammetry, these latter experiments exhibiting a dramatic scan rate dependence with the slowest scan rates showing distinct intermediate states that are stable over a range of potentials. These states are assigned to flavosemiquinone species that are stabilized in the special environment of the ZMW nanopore.
The ability of zero-mode waveguides (ZMW) to guide light into subwavelength-diameter nanoapertures has been exploited for studying electron transfer dynamics in zeptoliter-volume nanopores under single-molecule occupancy conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.