To maximize the effectiveness of rehabilitative therapies after stroke, it is critical to determine when the brain is most responsive (i.e., plastic) to sensorimotor experience after injury and to focus such efforts within this period. Here, we compared the efficacy of 5 weeks of enriched rehabilitation (ER) initiated at 5 d (ER5), ER14, or ER30 after focal ischemia, as judged by functional outcome and neuromorphological change. ER5 provided marked improvement in skilled forelimb reaching ability and ladder-rung-and narrow-beam-walking tasks and attenuated the stroke-induced reliance on the unaffected forepaw for postural support. ER14 provided improvement to a somewhat lesser extent, whereas recovery was diminished after ER30 such that motor function did not differ from ischemic animals exposed to social housing.To examine potential neural substrates of the improved function, we examined dendritic morphology in the undamaged motor cortex because our previous work (Biernaskie and Corbett, 2001) suggested that recovery was associated with enhanced dendritic growth in this region. ER5 increased the number of branches and complexity of layer V neurons compared with both social housing and control animals. Dendritic arbor after ER14 (although increased) and ER30 did not differ from those exposed to social housing. These data suggest that the poststroke brain displays heightened sensitivity to rehabilitative experience early after the stroke but declines with time. These findings have important implications for rehabilitation of stroke patients, many of whom experience considerable delays before therapy is initiated.
Previously, a Bcl-2-interacting protein, BAG-1, was cloned from mouse cells and was shown to interact with several other proteins and to be important for inhibition of apoptosis. Human BAG-1 (hBAG-1) cDNA, recently isolated by us and two other groups, has been shown to be identical to a hormone receptor-binding protein, RAP46. However, di erent molecular masses of hBAG-1 protein products were noted by these three groups. Here we demonstrated that hBAG-1 protein was expressed as four isoforms, designated p50, p46, p33 and p29, with apparent molecular masses of 50 kDa, 46 kDa, 33 kDa and 29 kDa, respectively. Deletion, site-directed mutagenesis and in vitro transcription/translation analysis showed that the four protein products of hBAG-1 were expressed by alternative initiation from four di erent start codons through a leaky scanning mechanism. Furthermore, we demonstrated that the distinct forms of hBAG-1 have di erent subcellular localizations, suggesting that they may have distinct functions in the cells. Characterization of hBAG-1 RNA and protein also showed that hBAG-1 was overexpressed in human cervical, breast and lung cancer cell lines. Taken together, these data clarify the con¯icting observations reported in the literature and suggest that hBAG-1 is expressed as four forms of protein products, which may play a di erential role in apoptosis and oncogenesis of human cells.
Data suggest that there is a critical threshold of rehabilitation, below which recovery will not occur, and that BDNF mediates functional recovery. The use of intensive rehabilitation therapies for stroke patients is strongly supported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.