Soil legacy data rescue via GlobalSoilMap and other international and national initiatives The International Center for Tropical Agriculture (CIAT) believes that open access contributes to its mission of reducing hunger and poverty, and improving human nutrition in the tropics through research aimed at increasing the eco-efficiency of agriculture. CIAT is committed to creating and sharing knowledge and information openly and globally. We do this through collaborative research as well as through the open sharing of our data, tools, and publications.
A latex technique is used to prepare graphene/polystyrene and graphene/poly(propylene) composites with varying GR loadings. Their electrical properties and the corresponding volume organisation of GR networks are studied. Percolation thresholds for conduction are found to be about 0.9 and 0.4 wt% for GR/PS and GR/PP with maximum obtained conductivities of 12 and 0.4 S m−1 for GR loadings of 2 wt%, respectively. Investigations using SEM and electrical conductivity measurements show that for the preparation conditions used GR forms an isotropic 3D network in the PS matrix, but GR forms a 2D network in the PP matrix. The different GR network organisations are possibly forced by the different melt flow behaviour of the matrix polymers during processing and the subsequent crystallisation of PP.
Preliminary investigations suggest biological geotextiles could be an effective and inexpensive soil conservation method, with enormous global potential. However, limited quantitative data are available on the erosion-reducing effects of biological geotextiles. Therefore, the objective is to evaluate the effectiveness of biological geotextiles in reducing runoff and soil loss under controlled laboratory conditions and under field conditions reflecting continental, temperate and tropical environments. In laboratory experiments, interrill runoff, interrill erosion and concentrated flow erosion were simulated using various rainfall intensities, flow shear stresses and slope gradients. Field plot data on the effects of biological geotextiles on sheet and rill erosion were collected in several countries (UK, Hungary, Lithuania, South Africa, Brazil, China and Thailand) under natural rainfall. Overall, based on the field plot data, the tested biological geotextiles reduce runoff depth and soil loss rates on average by 46 per cent and 79 per cent, respectively, compared to the values for bare soil. For the field and laboratory data of all tested geotextiles combined, no significant difference in relative runoff depth between field measurements and interrill laboratory experiments is observed. However, relative soil loss rate for the concentrated flow laboratory experiments are significantly higher compared to the interrill laboratory experiments and the field plot measurements. Although this study points to some shortcomings of conducting laboratory experiments to represent true field conditions, it can be concluded that the range and the mean relative runoff depth and soil loss rate as observed with the field measurements is similar to those as observed with the interrill laboratory experiments.
At present, there is no comprehensive soil quality assessment practice for soil stockpiles in the South African coal mining industry. Soil microorganisms and enzymes are suitable indicators for soil quality monitoring. Therefore, this study investigated the microbial community and enzyme (beta-glucosidase and urease) activities in soil stockpiles of opencast coal mines in the coal-rich region of South Africa. Soil stockpiles of three opencast coal mines were sampled at depths of 0-20 cm ('topsoil') and >20 cm ('subsoil') across three seasons. Beta-glucosidase and urease activities were mostly higher in soil stockpiles than in unmined soils and were significantly influenced (P < 0.05) by the interaction of site and seasonal factors. However, analyses of PCR-denaturing gradient gel electrophoresis (PCR-DGGE) profiles of partial 16S rRNA gene and internally transcribed spacer 2 (ITS2) sequences revealed higher microbial diversity in unmined (reference) soils compared to soil stockpiles across all seasons. Redundancy analysis further revealed that microbial communities of topsoil were not significantly (P > 0.05) influenced by soil properties, whereas microbial communities of subsoils were significantly (P < 0.05) influenced by pH, organic carbon, total nitrogen and phosphorus contents. Furthermore, operational taxonomic units (OTUs) belonging to genera of known phytobeneficial species such as Azomonas, Aureobasidium, Phialocephala, Phoma and Sordariomycetes were detected in these soils. Overall, results suggest that the microbial community structure and diversity observed in stockpiles is impaired (compared to the unmined site), although variations in the microbial community structure of soil stockpiles across seasons are site-specific. The impaired microbial community of stockpiles may have negative implications on soil biological processes driven by microbes; especially those that are critical for nutrient cycling and ecosystem sustainability. More importantly, such alteration in soil biodiversity may impair post-mining land use capability of stockpile soils.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.