This study assessed, for the first time, the mycotoxicological risks from consumption of complementary foods by infants and young children in Nigeria. Molds belonging to Aspergillus aculeatinus, A. flavus, A. luchuensis, A. tubingensis, A. welwitschiae and Geotrichum candidum were recovered from the complementary foods. Twenty-eight major mycotoxins and derivatives, and another 109 microbial metabolites including chloramphenicol (a bacterial metabolite), were quantified in 137 food samples by LC-MS/MS. Aflatoxins and fumonisins co-contaminated 42% of the cereal- and nut-based food samples, at mean concentrations exceeding the EU limits of 0.1 and 200 μg/kg set for processed baby foods by 300 and six times, respectively. Milk contained mainly beauvericin, chloramphenicol and zearalenone. The trichothecenes, T-2 and HT-2 toxins, were quantified only in infant formula and at levels three times above the EU indicative level of 15 μg/kg for baby food. Chronic exposure estimate to carcinogenic aflatoxin was high causing low margin of exposure (MOE). Exposures to other mycotoxins either exceeded the established reference values by several fold or revealed low MOEs, pointing to important health risks in this highly vulnerable population. The observed mycotoxin mixtures may further increase risks of adverse health outcomes of exposure; this warrants urgent advocacy and regulatory interventions.
Kunu is a traditional fermented single or mixed cereals-based beverage popularly consumed in many parts of West Africa. Presently, the bacterial community and mycotoxin contamination profiles during processing of various kunu formulations have never been comprehensively studied. This study, therefore, investigated the bacterial community and multi-mycotoxin dynamics during the processing of three kunu formulations using high-throughput sequence analysis of partial 16S rRNA gene (hypervariable V3-V4 region) and liquid chromatography tandem mass spectrometry (LC-MS/MS), respectively. A total of 2,303 operational taxonomic units (OTUs) were obtained across six processing stages in all three kunu formulations. Principal coordinate analysis biplots of the Bray-Curtis dissimilarity between bacterial communities revealed the combined influences of formulations and processing steps. Taxonomically, OTUs spanned 13 phyla and 486 genera. Firmicutes (phylum) dominated (relative abundance) most of the processing stages, while Proteobacteria dominated the rest of the stages. Lactobacillus (genus taxa level) dominated most processing stages and the final product (kunu) of two formulations, whereas Clostridium sensu stricto (cluster 1) dominated kunu of one formulation, constituting a novel observation. We further identified Acetobacter, Propionibacterium, Gluconacetobacter, and Gluconobacter previously not associated with kunu processing. Shared phylotypes between all communities were dominated by lactic acid bacteria including species of Lactobacillus, Lactococcus, Leuconostoc, Pediococcus, and Weissella. Other shared phylotypes included notable acetic acid bacteria and potential human enteric pathogens. Ten mycotoxins [3-Nitropropionic acid, aflatoxicol, aflatoxin B1 (AFB1), AFB2, AFM1, alternariol (AOH), alternariolmethylether (AME), beauvericin (BEAU), citrinin, and moniliformin] were quantified at varying concentrations in ingredients for kunu processing. Except for AOH, AME, and BEAU that were retained at minimal levels of < 2 μg/kg in the final product, most mycotoxins in the ingredients were not detectable after processing. In particular, mycotoxin levels were substantially reduced by fermentation, although simple dilution and sieving also contributed to mycotoxin reduction. This study reinforces the perception of kunu as a rich source of bacteria with beneficial attributes to consumer health, and provides in-depth understanding of the microbiology of kunu processing, as well as information on mycotoxin contamination and reduction during this process. These findings may aid the development of starter culture technology for safe and quality kunu production.
Soil microbial communities are suitable soil ecosystem health indicators due to their sensitivity to management practices and role in soil ecosystem processes. Presently, information on structural and functional differentiation of bacterial communities in post-coal mining reclamation soils of South Africa is sparse. Here, bacterial communities in three post-coal mining reclamation soils were investigated using community-level physiological profiling (CLPP), enzyme activities, and next-generation sequencing of 16S rRNA gene. Inferences were drawn in reference to adjacent unmined soils. CLPPbased species diversity and proportionality did not differ significantly (P > 0.05) whereas activities of β-glucosidase, urease and phosphatases were significantly (P < 0.05) influenced by site and soil history (reclaimed vs unmined). Bacterial communities were influenced (PERMANOVA, P < 0.05) by soil history and site differences, with several phylotypes differentially abundant between soils. Contrastingly, predicted functional capabilities of bacterial communities were not different (PERMANOVA, P > 0.05), suggesting redundancy in bacterial community functions between reclamation and unmined soils. Silt content, bulk density, pH, electrical conductivity, Na and Ca significantly influenced soil bacterial communities. Overall, results indicate that bacterial community structure reflects underlying differences between soil ecosystems, and suggest the restoration of bacterial diversity and functions over chronological age in reclamation soils. The soil ecosystem supports numerous interactions between living and non-living matter. These interactions are vital to the soil's ecological processes and key ecosystem services 1,2. However, anthropogenic disturbances of the soil ecosystem through agriculture, mining and other land use activities, negatively affect these vital interactions 3,4. Although relevant post-mining reclamation guidelines exist in South Africa for restoring mined-out areas to acceptable conditions 5 , appropriate comprehensive soil quality monitoring tools for ensuring the success of post-mining reclamation efforts are still lacking. Such soil quality monitoring tools will help elucidate the adequacy of current reclamation practices and could provide insights into the potential restoration of ecological roles. At present, several above-ground monitoring indicators for soil quality, including vegetation cover, erodibility, and compaction levels have been proposed and utilised on post-coal mining reclamation sites 6. However, these above ground indicators do not provide a comprehensive assessment of soil health given that the soil ecosystem
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.