Cystatins are a family of naturally occurring cysteine protease inhibitors, yet the target proteases and biological processes they regulate are poorly understood. Cystatin F is expressed selectively in immune cells and is the only cystatin to be synthesised as an inactive disulphide-linked dimeric precursor. Here, we show that a major target of cystatin F in different immune cell types is the aminopeptidase cathepsin C, which regulates the activation of effector serine proteases in T cells, natural killer cells, neutrophils and mast cells. Surprisingly, recombinant cystatin F was unable to inhibit cathepsin C in vitro even though overexpression of cystatin F suppressed cellular cathepsin C activity. We predicted, using structural models, that an N-terminal processing event would be necessary before cystatin F can engage cathepsin C and we show that the intracellular form of cystatin F indeed has a precise N-terminal truncation that creates a cathepsin C inhibitor. Thus, cystatin F is a latent protease inhibitor itself regulated by proteolysis in the endocytic pathway. By targeting cathepsin C, it may regulate diverse immune cell effector functions.
Hypermethylation of CpG islands in the RASSF1 promoter is one of the most frequent events identified in human cancer. The epigenetic-driven loss of RASSF1A protein expression is observed more often in tumors of higher grade and correlates with a decreased responsiveness to DNA-damaging therapy. Ras association domain-containing family 1A (RASSF1A) promotes apoptosis by signaling through the MST2 and LATS1 kinases, leading to stabilization of the YAP1/p73 transcriptional complex. Here we provide evidence for a new pathway linking DNA damage signaling to RASSF1A via the main sensor of double-strand breaks in cells, ataxia telangiectasia mutated (ATM). We show that, upon DNA damage, RASSF1A is phosphorylated by ATM on Ser131 and is involved in the activation of both MST2 and LATS1, leading to the stabilization of p73. Furthermore, lung and ovarian tumor cell lines that retain RASSF1A expression commonly harbor polymorphisms in the region of Ser131, and our analysis shows that the S131F polymorphism conveys resistance to DNA-damaging agents. Thus, we present a novel DNA damage pathway emanating from ATM that is frequently disabled in tumors via epigenetic silencing of RASSF1 or mutation of an ATM phosphorylation site.
Genomic instability is a key hallmark of cancer leading to tumour heterogeneity and therapeutic resistance. BRCA2 has a fundamental role in error-free DNA repair but also sustains genome integrity by promoting RAD51 nucleofilament formation at stalled replication forks. CDK2 phosphorylates BRCA2 (pS3291-BRCA2) to limit stabilizing contacts with polymerized RAD51; however, how replication stress modulates CDK2 activity and whether loss of pS3291-BRCA2 regulation results in genomic instability of tumours are not known. Here we demonstrate that the Hippo pathway kinase LATS1 interacts with CDK2 in response to genotoxic stress to constrain pS3291-BRCA2 and support RAD51 nucleofilaments, thereby maintaining genomic fidelity during replication stalling. We also show that LATS1 forms part of an ATR-mediated response to replication stress that requires the tumour suppressor RASSF1A. Importantly, perturbation of the ATR-RASSF1A-LATS1 signalling axis leads to genomic defects associated with loss of BRCA2 function and contributes to genomic instability and 'BRCA-ness' in lung cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.