Mu opioid receptors are expressed throughout the central and peripheral nervous systems. Peripheral inflammation leads to an increase in mu receptor present on the peripheral terminals of primary sensory neurons. Activation of peripheral mu receptors produces potent antihyperalgesic effects in both humans and animals. Here, we describe the in vivo pharmacological properties of the structurally novel, highly potent, systemically available yet peripherally restricted mu opioid agonist, [8-(3,3-diphenyl-propyl)-4-oxo-1-phenyl-1,3,8-triaza-spiro[4.5]dec-3-yl]-acetic acid (DiPOA). DiPOA administered i.p. produced naltrexone-sensitive, dose-dependent reversal of Freund's complete adjuvant-induced inflammatory mechanical hyperalgesia (1-10 mg/kg). Maximum percent reversal (67%) was seen 1 h postadministration at 10 mg/kg (the highest dose studied). DiPOA also proved antihyperalgesic in a model of postsurgical pain with a maximum percent reversal of 85% 1 h postadministration at 30 mg/kg i.p. (the highest dose studied). DiPOA administered i.p. had no effect in the tail flick assay of acute pain (0.1-10 mg/kg), produced no ataxia as measured by latency to fall from an accelerating rotarod (3-30 mg/kg), and was not antihyperalgesic in the Seltzer model of neuropathic pain (1-10 mg/kg). This is the first report of a peripherally restricted, small-molecule mu opioid agonist that is nonsedating, antihyperalgesic, and effective against inflammatory and postsurgical pain when administered systemically.To date, four members of the opioid receptor family have been cloned and characterized, and include the mu, kappa, delta, and opioid receptor-like 1 (ORL-1) receptors (Pleuvry, 2003). All are G-protein-coupled receptors and mediate inhibition of adenylate cyclase through activation of GTP-binding proteins. In addition, opioid receptor agonism results in the opening of receptor-operated potassium channels and suppression of voltage-gated calcium currents (Duggan and North, 1983). Several classes of endogenous peptidic ligands have been identified for the opioid receptors, including the enkephalins, dynorphins, endorphins, and nociceptin (Terenius, 2000). These ligands are distributed throughout the central and peripheral nervous system (CNS and PNS) as well as in peripheral tissues.Opioid receptors are also expressed throughout the CNS, and their activation results in potent analgesia via inhibition of ascending excitatory nociceptive transmissions and activation of descending inhibitory systems (Fields and Basbaum, 1999;Yaksh, 1999). Activation of CNS opioid receptors also results in diminished responsiveness of the brainstem respiratory centers to carbon dioxide (Gutstein and Akil, 2001) and stimulation of dopaminergic pathways, particularly the Article, publication date, and citation information can be found at
Background: Novel preclinical models for prediction of osteoarthritis-like pain are necessary for the elucidation of osteoarthritis (OA) pathology and for assessment of novel analgesics. A widely used behavioral test in rat models of tibiofemoral OA is hind limb weight bearing (WB). However, this method evaluates WB in an unnaturally restricted manner. The aim of this study was therefore to characterize the Tekscan Pressure Measurement System as a means to assess OA-like tibiofemoral pain in rats by determination of plantar pressure distribution in a more natural and unrestricted position, defined as unrestricted WB. Methods: Intra-articular injections of 1 mg monosodium iodoacetate (MIA) or saline were administrated in the left hind knee of 84 male Sprague Dawley rats. Changes in unrestricted WB between ipsilateral and contralateral hindlimbs were determined. Morphine (5 mg/kg administered subcutaneously) and naproxen (60 mg/kg per-oral) were examined for their ability to reverse WB changes. Results: Changes in hind limb unrestricted WB were observed 14 (P < 0.05), 21 (P < 0.001) and 28 (P < 0.001) days post intra-articular injections of MIA compared to control. These alterations were attenuated by morphine 1 hour post administration compared to baseline but were not affected by naproxen. Conclusion: This study indicated that unrestricted WB assessed by the Tekscan system can be utilized as a clinically relevant method to assess aberrations in WB induced by intra-articular MIA injections in rodents. Therefore, this system may be useful for understanding the mechanisms of OA pain in humans and may also assist in the discovery of novel pharmacological agents.
Introduction Treatments for insomnia have targeted GABA, histamine, serotonin, melatonin and orexin receptors. The nociceptin/orphanin-FQ peptide (NOP) receptor is widely expressed in the nervous system. High doses of NOP agonists administered systemically or locally into the CNS can result in sedation, however, the utility of targeting this receptor to treat insomnia has not been fully described. Methods V117957 is a recently described investigational oral, potent and selective NOP receptor partial agonist. We determined the brain Kp in whole brain and multiple sub-regions (50mg/kg) and receptor occupancy in the hypothalamus (30, 300mg/kg) via in vivo displacement using [3H]-NOP-1A. EEG/EMG were determined in rats chronically implanted with electrodes (cortex and dorsal neck muscle) and recorded via telemetry following dosing (3, 30, 300mg/kg); sleep stage was determined from visual analysis of EEG level. Sleep parameters were also assessed in NOP receptor knock-out rats (300mg/kg). The side-effect profile for V117957 was determined by functional observation battery, whole-body plethysmography, Morris water maze (MWM) (up to 600mg/kg) and conditioned place preference (CPP) assay (up to 300mg/kg). Results V117957 displayed limited distribution into the CNS but achieved a high level of receptor occupancy (75% at 30mg/kg). Administration of V117957 produced dose-dependent and statistically significant increases in non-REM sleep with a minimally efficacious dose of 30mg/kg; a coincident dose-dependent and statistically significant decrease in wakefulness and a non-dose-dependent effect on REM sleep occurred. These changes were not seen in knock-out animals demonstrating effects are via NOP receptors. At doses higher than those that increased non-REM sleep, V117957 had no effects in a functional observational battery, did not affect escape latency in MWM or produce CPP; additionally, V117957 did not affect respiratory parameters. Conclusion We conclude that activation of NOP receptors decreases wakefulness and increases non-REM sleep in rats with an improved preclinical profile compared to historical profiles of current treatments and, therefore, may represent a novel and attractive target for the treatment of insomnia. Support Funded by Shionogi and Imbrium Therapeutics, a subsidiary of Purdue Pharma L.P.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.