Full-surface laser ablation has been shown to efficiently disrupt stratum corneum and facilitate transcutaneous drug delivery, but it is frequently associated with skin damage that hampers its clinic use. We show here that a safer ablative fractional laser (AFL) can sufficiently deliver not only patch-coated hydrophilic drugs but also protein vaccines. AFL treatment generated an array of self renewable microchannels (MCs) in the skin surface, providing free paths for drug and vaccine delivery into the dermis while sustains integrity of the skin by quick healing of the MCs. AFL was superior to tape stripping in transcutaneous drug and vaccine delivery as a much higher amount of sulforhodamine B (SRB), methylene blue (MB) or a model vaccine ovalbumin (OVA) was recovered from AFL-treated skin than tape stripping-treated skin or control skin after patch application. Following entry into the MCs, the drugs or OVA diffused quickly to the entire dermal tissue via the lateral surface of conical-shaped MCs. In contrast, a majority of the drugs and OVA remained on the skin surface, unable to penetrate into the dermal tissue in untreated control skin or tape stripping-treated skin. Strikingly, OVA delivered through the MCs was efficiently taken up by epidermal Langerhans cells and dermal dendritic cells in the vicinity of the MCs or transported to the draining lymph nodes, leading to a robust immune response, in sharp contrast to a weak, though significant, immune response elicited in tape stripping group or a basal immune response in control groups. These data support strongly that AFL is safe and sufficient for transcutaneous delivery of drugs and vaccines.
The pathophysiology of acne vulgaris depends on active sebaceous glands, implying that selective destruction of sebaceous glands could be an effective treatment. We hypothesized that light-absorbing microparticles could be delivered into sebaceous glands, enabling local injury by optical pulses. A suspension of topically applied gold-coated silica microparticles exhibiting plasmon resonance with strong absorption at 800 nm was delivered into human pre-auricular and swine sebaceous glands in vivo, using mechanical vibration. After exposure to 10–50 J cm−2, 30 milliseconds, 800 nm diode laser pulses, microscopy revealed preferential thermal injury to sebaceous follicles and glands, consistent with predictions from a computational model. Inflammation was mild; gold particles were not retained in swine skin 1 month after treatment, and uptake in other organs was negligible. Two independent prospective randomized controlled clinical trials were performed for treatment of moderate-to-severe facial acne, using unblinded and blinded assessments of disease severity. Each trial showed clinically and statistically significant improvement of inflammatory acne following three treatments given 1–2 weeks apart. In Trial 2, inflammatory lesions were significantly reduced at 12 weeks (P=0.015) and 16 weeks (P=0.04) compared with sham treatments. Optical microparticles enable selective photothermolysis of sebaceous glands. This appears to be a well-tolerated, effective treatment for acne vulgaris.
Background Lasers and intense pulsed light sources (IPLS) are proposed for the treatment of many pigmentary disorders. They are sometimes considered as magic tools able to remove any type of lesions. Although being the best option for several hyperpigmented lesions, they can also worsen some conditions and have potential side‐effects. Objective The aim of this review was to give evidence‐based recommendations for the use of lasers and IPLS in the treatment of hyperpigmented lesions. Methods These recommendations were produced for the European Society of Laser Dermatology by a consensus panel made up of experts in the field of pigment laser surgery. Recommendations on the use of lasers and light treatments were made based on the quality of evidence for efficacy, safety, tolerability, cosmetic outcome, patient satisfaction/preference and, where appropriate, on the experts' opinion. Results Lasers and IPLS are very effective for treating many hyperpigmented lesions such as lentigos, dermal hypermelanocytosis or heavy metal depositions. In the other hand, they have to be considered with great caution for other disorders, such as café au lait macules, melasma or postinflammatory hyperpigmentation. After making the correct diagnosis, if lasers or IPLS are indicated, the optimal wavelengths and parameters will be chosen taking into account the skin phototype, origin and depth of the target pigments. Conclusion Although potentially very effective, lasers and IPLS cannot be proposed for all types of hyperpigmented lesions. In all cases, precise recognition of the disorder is mandatory for choosing between these devices and other therapeutic approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.