The neurotoxicity of amyloid-b protein (Ab) is widely regarded as one of the fundamental causes of neurodegeneration in Alzheimer's disease (AD). This toxicity is related to Ab aggregation into oligomers, protofibrils and fibrils. Recent studies suggest that intracellular Ab, which causes profound toxicity, could be one of the primary therapeutic targets in AD. So far, no compounds targeting intracellular Ab have been identified. We have investigated the toxicity induced by intracellular Ab in a neuroblastoma MC65 line and found that it was closely related to intracellular accumulation of oligomeric complexes of Ab (Ab-OCs). We further identified a cell-permeable tricyclic pyrone named CP2 that ameliorates this toxicity and significantly reduces the levels of Ab-OCs. In aqueous solution, CP2 attenuates Ab oligomerization and prevents the oligomer-induced death of primary cortical neurons. CP2 analogs represent a new class of promising compounds for the amelioration of Ab toxicities within both intracellular and extracellular sites.
To conserve carbohydrate reserves, the reaction of the pyruvate dehydrogenase complex (PDC) must be down-regulated when the citric acid cycle is provided sufficient acetyl-CoA. PDC activity is reduced primarily through increased phosphorylation of its pyruvate dehydrogenase (E1) component due to E1 kinase activity being markedly enhanced by elevated intramitochondrial NADH:NAD ؉ and acetyl-CoA:CoA ratios. A mechanism is evaluated in which enhanced kinase activity is facilitated by the build-up of the reduced and acetylated forms of the lipoyl moieties of the dihydrolipoyl acetyltransferase (E2) component through using NADH and acetyl-CoA in the reverse of the downstream reactions of the complex. Using a peptide substrate, kinase activity was stimulated by these products, ruling out the possibility kinase activity is increased due to changes in the reaction state of its substrate, E1 (thiamin pyrophosphate). Each E2 subunit contains two lipoyl domains, an NH 2 -terminal (L1) and the inward lipoyl domain (L2), which were individually produced in fully lipoylated forms by recombinant techniques. Although reduction and acetylation of the L1 domain or free lipoamide increased kinase activity, those modifications of the lipoate of the kinase-binding L2 domain gave much greater enhancements of kinase activity. The large stimulation of the kinase generated by acetyl-CoA only occurred upon addition of the transacetylase-catalyzing (lipoyl domain-free) inner core portion of E2 plus a reduced lipoate source, affirming that acetylation of this prosthetic group is an essential mechanistic step for acetyl-CoA enhancing kinase activity. Similarly, the lesser stimulation of kinase activity by just NADH required a lipoate source, supporting the need for lipoate reduction by E3 catalysis.Complete enzymatic delipoylation of PDC, the E2-kinase subcomplex, or recombinant L2 abolished the stimulatory effects of NADH and acetyl-CoA. Retention of a small portion of PDC lipoates lowered kinase activity but allowed stimulation of this residual kinase activity by these products. Reintroduction of lipoyl moieties, using lipoyl protein ligase, restored the capacity of the E2 core to support high kinase activity along with stimulation of that activity up to 3-fold by NADH and acetylCoA. As suggested by those results, the enhancement of kinase activity is very responsive to reductive acetylation with a half-maximal stimulation achieved with ϳ20% of free L2 acetylated and, from an analysis of previous results, with acetylation of only 3-6 of the 60 L2 domains in intact PDC. Based on these findings, we suggest that kinase stimulation results from modification of the lipoate of an L2 domain that becomes specifically engaged in binding the kinase. In conclusion, kinase activity is attenuated through a substantial range in response to modest changes in the proportion of oxidized, reduced, and acetylated lipoyl moieties of the L2 domain of E2 produced by fluctuations in the NADH: NAD ؉ and acetyl-CoA:CoA ratios as translated by the rapid and revers...
We recently reported that the peptide C-K4-M2GlyR mimics the action of chloride channels when incorporated into the apical membrane of cultured renal epithelial monolayers. C-K4-M2GlyR is one of a series of peptides that were prepared by the addition of lysine residues to the N- or C-terminus of the M2 transmembrane sequence of the brain glycine receptor. This study addresses how such modifications affect physical properties such as aqueous solubility, aggregation, and secondary structure, as well as the ability of the modified peptides to form channels in epithelial monolayers. A graded improvement in solubility with a concomitant decrease in aggregation in aqueous media was observed for the M2GlyR transmembrane sequences. Increases in short-circuit current (I(SC)) of epithelial monolayers were observed after treatment with some but not all of the peptides. The bioactivity was higher for the more soluble, less aggregated M2GlyR peptides. As described in our previous communication, sensitivity of channel activity to diphenylamine-2-carboxylate, a chloride channel blocker, and bumetanide, an inhibitor of the Na/K/2Cl cotransporter, was used to assess changes in chloride selectivity for the different assembled channel-forming peptides. The unmodified M2GlyR sequence and the modified peptides with less positive charge are more sensitive to these agents than are the more highly charged forms. This study shows that relatively insoluble transmembrane sequences can be modified such that they are easier to purify and deliver in the absence of organic solvents with retention of membrane association, insertion, and assembly.
Three series of 22-residue peptides derived from the transmembrane M2 segment of the glycine receptor a1-subunit (M2GlyR) have been designed, synthesized, and tested to determine the plasticity of a channel-forming sequence and to define whether channel pores with enhanced conductive properties could be created. Sixteen sequences were examined for aqueous solubility, solution-association tendency, secondary structure, and half-maximal concentration for supramolecular assembly, channel activity, and ion transport properties across epithelial monolayers. All peptides interact strongly with membranes: associating with, inserting across, and assembling to form homooligomeric bundles when in micromolar concentrations. Single and double amino acid replacements involving arginine and/or aromatic amino acids within the final five C-terminal residues of the peptide cause dramatic effects on the concentration dependence, yielding a range of K 1/2 values from 36 6 5 to 390 6 220 mM for transport activity. New water/lipid interfacial boundaries were established for the transmembrane segment using charged or aromatic amino acids, thus limiting the peptides' ability to move perpendicularly to the plane of the bilayer. Formation of discrete water/lipid interfacial boundaries appears to be necessary for efficient supramolecular assembly and high anion transport activity. A peptide sequence is identified that may show efficacy in channel replacement therapy for channelopathies such as cystic fibrosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.