The deleterious effects of prolonged sleep deprivation on behavior and cognition are a concern in modern society. Persons at risk for impaired performance and health-related issues resulting from prolonged sleep loss would benefit from agents capable of reducing these detrimental effects at the time they are sleep deprived. Agents capable of improving cognition by enhancing brain activity under normal circumstances may also have the potential to reduce the harmful or unwanted effects of sleep deprivation. The significant prevalence of excitatory α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamatergic receptors in the brain provides a basis for implementing a class of drugs that could act to alter or remove the effects of sleep deprivation. The ampakine CX717 (Cortex Pharmaceuticals), a positive allosteric modulator of AMPA receptors, was tested for its ability to enhance performance of a cognitive, delayed match-to-sample task under normal circumstances in well-trained monkeys, as well as alleviate the detrimental effects of 30–36 h of sleep deprivation. CX717 produced a dose-dependent enhancement of task performance under normal alert testing conditions. Concomitant measures of regional cerebral metabolic rates for glucose (CMRglc) during the task, utilizing positron emission tomography, revealed increased activity in prefrontal cortex, dorsal striatum, and medial temporal lobe (including hippocampus) that was significantly enhanced over normal alert conditions following administration of CX717. A single night of sleep deprivation produced severe impairments in performance in the same monkeys, accompanied by significant alterations in task-related CMRglc in these same brain regions. However, CX717 administered to sleep-deprived monkeys produced a striking removal of the behavioral impairment and returned performance to above-normal levels even though animals were sleep deprived. Consistent with this recovery, CMRglc in all but one brain region affected by sleep deprivation was also returned to the normal alert pattern by the drug. The ampakine CX717, in addition to enhancing cognitive performance under normal alert conditions, also proved effective in alleviating impairment of performance due to sleep deprivation. Therefore, the ability to activate specific brain regions under normal alert conditions and alter the deleterious effects of sleep deprivation on activity in those same regions indicate a potential role for ampakines in sustaining performance under these types of adverse conditions.
A benzamide drug that crosses the bloodbrain barrier and facilitates DL-a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated synaptic responses was tested for its effects on memory in three behavioral tasks. The compound reversibly increased the amplitude and prolonged the duration of field excitatory postsynaptic potentials in hippocampal slices and produced comparable effects in the dentate gyrus in situ after intraperitoneal iDjections. Rats in jected with the drug 30 min prior to being given a suboptimal number of training trials in a two-odor discrimination task were more likely than controls to select the correct odor in a retention test carried out 96 hr later. Evidence for improved memory was also obtained in a water maze task in which rats were given only four trials to find a submerged platform in the presence of spatial cues; animals injected with the drug 30 min before the training session were significantly faster than vehicle-inJected controls in returning to the platform location when tested 24 hr after training. Finally, the drug produced positive effects in a radial maze test of short-term memory. Well trained rats were allowed to retrieve rewards from four arms of an eight-arm maze and then tested for reentry errors 8 hr later. The number of such errors was substantially reduced on days in which the animals were inJected with the drug before initial learning. These results indicate that a drug that facilitates glutamatergic transmission enhances the encoding of memory across tasks involving different sensory cues and performance requirements. This may reflect an action on the cellular mechanisms responsible for producing synaptic changes since facilitation of AMPA receptors promotes the induction of the long-term potentiation effect.Recent work indicates that facilitation of DL-a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) (glutamate) receptor-mediated transmission in slices of hippocampus reduces the amount of afferent stimulation needed to induce a maximal degree of long-term potentiation (LTP) without changing the LTP "ceiling" itself (1). Because there is evidence implicating LTP as a substrate for certain types of memory (2), it is possible that drugs that produce such effects in brain will reduce the amount of training needed for the formation of robust memory. The experiments reported here tested this idea by using a drug that crosses the bloodbrain barrier and enhances synaptic responses in freely moving animals.The carbonic anhydrase inhibitor cyclothiazide and the nootropic compound aniracetam enhance excitatory transmission in vitro by prolonging the open time of glutamate (AMPA) receptors (3-6). Cyclothiazide probably does not cross the blood-brain barrier (7) and aniracetam is rapidly metabolized in peripheral tissues to anisoyl -y-aminobutyric acid (GABA) (8), which we have found to have little effect onThe publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "adv...
Restoration of neuronal viability and synaptic plasticity through increased trophic support is widely regarded as a potential therapy for the cognitive declines that characterize aging. Previous studies have shown that in the hippocampal CA1 basal dendritic field deficits in the stabilization of long-term potentiation (LTP) are evident by middle age. The present study tested whether increasing endogenous brain-derived neurotrophic factor (BDNF) could reverse this age-related change. We report here that in middle-aged (8- to 10-mo-old) rats, in vivo treatments with a positive AMPA-type glutamate receptor modulator both increase BDNF protein levels in the cortical telencephalon and restore stabilization of basal dendritic LTP as assessed in acute hippocampal slices 18 h after the last drug treatment. These effects were not attributed to enhanced synaptic transmission or to facilitation of burst responses used to induce LTP. Increasing extracellular levels of BDNF by exogenous application to slices of middle-aged rats was also sufficient to rescue the stabilization of basal dendritic LTP. Finally, otherwise stable LTP in ampakine-treated middle-aged rats can be eliminated by infusion of the extracellular BDNF scavenger TrkB-Fc. Together these results indicate that increases in endogenous BDNF signaling can offset deficits in the postinduction processes that stabilize LTP.
Eighty-four analogues and derivatives of the acetylcholine-storage-blocking drug trans-2-(4-phenylpiperidino)-cyclohexanol (vesamicol) were synthesized, and their potencies were evaluated with the acetylcholine active-transport assay utilizing purified synaptic vesicles from Torpedo electric organ. The parent drug exhibits enantioselectivity, with (-)-vesamicol being 25-fold more potent than (+)-vesamicol. The atomic structure and absolute configuration of (+)-vesamicol were determined by X-ray crystallography. The absolute configuration of (-)-vesamicol is 1R,2R. Structure-activity evidence indicates that (-)-vesamicol does not act as an acetylcholine analogue. Alterations to all three rings can have large effects on potency. Unexpectedly, analogues locking the alcohol and ammonium groups trans-diequatorial or trans-diaxial both exhibit good potency. A potent benzovesamicol family has been discovered that is suitable for facile elaboration of the sort useful in affinity labeling and affinity chromatography applications. A good correlation was found between potencies as assessed by the acetylcholine transport assay and LD50 values in mouse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.