<p>An expedition EMM-Etna to simulate the Lunar and Martian volcanic and soil environment will be carried out at Mount.Etna&#8217;s Cratere del Laghetto in Sicily, near Catania Italy by the EuroMoonMars TUDublin and LEAPS ExoMars groups. This scouting campaign intends to train in using instruments to be used on MoonMars landers and rovers, with a perspective of ARCHES DLR telerobotics campaign to be conducted in June 2022, and in preparation for ExoMars rover instruments (PANCAM, CLUPI and spectrometers) science and operations.</p> <p>&#160;</p> <p>&#160;</p> <p>&#160;</p> <p>Figure 1: Lunar Lander and REMMI Rover for Sample Analysis</p> <p>The aim of this EMM-Etna expedition is to investigate and analyse the terrain with the use of different scientific instruments. The topography of the landscape will be photographed using a 360&#176; panoramic camera and drone; it will be processed, and a 3D model developed. The terrain will also be investigated using the REMMI Rover, the abilities of the rover to operate and transport equipment will be monitored. This will further develop the knowledge available of the terrain and help future expeditions to identify different landmarks. The use of a Radio Jove Antenna will permit the team to monitor transmissions from both the Sun and Jupiter. This will allow different cosmic events or changes in the celestial objects to be studied and explored. On site a selection of different samples will also be collected and examined using the REMMI Rover. An Ocean Optics UV-Vis-NIR spectrometer will a be operated&#160; in order to evaluate the existence of biological compounds and substances within these samples and in the area itself. It is key to understand the molecular makeup of one&#8217;s surroundings when in an unknown environment. By analysing samples collected, spectroscopy can be used to identify and determine a diagnostic for each substance. This process will be monitored by a Logitech camera to ensure it is carried put correctly. A selection of photographs will be captured of each sample using a portable optical microscope. This will allow an in-depth analysis of the microscopic structure of each collected sample. The use of all of the instruments mentioned above is key in the investigation and research into the Moon and Martian-like volcanic environment that is Mount Etna.</p> <p>We would also like to thank Prof I. Pagano's team from the University of Catania and Dr A.Wedler's team from DLR Deutsches Zentrum f&#252;r Luft- und Raumfahrt for their support in organising this expedition.</p>
<p>The EuroMoonMars Etna campaign (EMM-Etna) took place on Mt. Etna in Sicily between the 6<sup>th</sup> and 11<sup>th</sup> of July 2021. The scouting campaign was organised by ten students of the International Lunar Exploration Working Group (ILEWG) EuroMoonMars program [1-3] in preparation for the DLR ARCHES (Autonomous Robotic Networks to Help Modern Societies) campaign and the ExoMars launch in 2022. During the ARCHES campaign on Mt. Etna in the summer of 2022, a team of robotics engineers will test various moon landing scenarios to show the capabilities of heterogeneous, autonomous, and interconnected robotic systems [4]. For the EMM-Etna campaign, the team simulated the landing of the REMMI Rover [5] on Mt. Etna as a Mars-analogue site, using a 360-degree remote-controlled camera holder to replicate a panoramic camera. Furthermore, samples were collected and analysed using an Ocean Optics UV-Vis-NIR spectrometer, a Field Raman, and a portable microscope. When working with a team of scientists and engineers the planning and organisation of the campaign are vital. Therefore, every crew member had their distinctive role during the mission, starting from being responsible for individual instruments or the outreach during the campaign to roles such as planner and data officer. Additionally, a mission protocol for the operational steps of the landing of the rover in the volcanic environment was implemented to assure smooth operation in the field.</p><p><span><span>References</span></span>:</p><p>[1]&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160; https://moonbasealliance.com/ilewg</p><p>[2]&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160; https://euromoonmars.space/</p><p>[3] &#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160; H. Reilly et al. "Instruments Operations, Science and Innovation in Expedition Support: EuroMoonMars-Etna campaign 2021", European Planetary Science Congress 2021, online, 13&#8211;24 Sep 2021, EPSC2021-848, https://doi.org/10.5194/epsc2021-848, 2021.</p><p>[4]&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160; M. J. Schuster et al. "The ARCHES Space-Analogue Demonstration Mission: Towards Heterogeneous Teams of Autonomous Robots for Collaborative Scientific Sampling in Planetary Exploration", IEEE Robotics and Automation Letters 5.4 (2020): 5315-5322.</p><p>[5]&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160; C. Mohan et al. "Rover testing for lunar science and innovation", European Planetary Science Congress 2021, online, 13&#8211;24 Sep 2021, EPSC2021-850, https://doi.org/10.5194/epsc2021-850, 2021.</p><p>&#160;</p>
<p>In coordination with ILEWG EuroMoonMars, a number of radio antenna tests have been carried out and analysed for solar observations. The instrument used for this data collection is the radio Jove, connected to a single dipole antenna at a set height. Data is recorded using a software program known as Radio-SkyPipe and the audio from the observations is analysed in person by the operator and recorded using livestreaming platforms for later analysis. Noise is a major factor while trying to operate this device, as such, a quiet location and fine tuning is essential for isolating the favoured frequency range. Solar activity plays a major role in the success of the device. While carrying out solar observations, the sought after transmissions are from solar bursts and flares. These transmissions can be very difficult to capture as a result of low solar activity, up-time of the device and external noise.&#160; The device has been tested in a number of locations in Leiden, Netherlands and will be later tested on on lunar volcanic ash analogue in Cratere di Laghetto,&#160; in Mount Etna, Catania, Sicily.&#160; As a result of observations to date, a solar burst has been isolated for later analysis. &#160;In the near future, the device will be used for Jupiter observations. This data will be analysed and compared to data which has been obtained through solar observations in order to see the changes between the two transmissions. We shall learn from this EMM-Etna field tests to prepare the analysis of DLR-ESA ARCHES Etna 2022 tele-robotic campaign that will deploy with rovers an array of 4 radio VLF antennas, among a number of rover science and technical tasks.&#160;</p> <p>Acknowledgements: we thank Chirayu Mohan, Kevin McGrath and Hannah Reilly for their help setting up the device. As well as Fabian Mulder for his hospitality in Leiden Innovation CenterPLNT & "The Field" and the EuroMoonMars ExoMars team along with the ARCHES Etna team for providing support in Sicily.</p> <p>&#160;</p> <p><img src="data:image/png;base64, iVBORw0KGgoAAAANSUhEUgAAAaAAAAEuCAIAAABH7lGmAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAEnQAABJ0Ad5mH3gAAAAhdEVYdENyZWF0aW9uIFRpbWUAMjAyMTowNjowMiAwMjoyNjo1ONT/1RYAAKGySURBVHhe7Z13YFXF1sXxqU9aCKH33nsH6UiVDoIgEalKEaWjICAivUtHinTpvYP0IFWa1NAJPRAIIYDo4/vdsy7nuyaIoSc3s/4Y9uzZs2fOzJ519tzchDfu3bv3zjvvRDEwMDBwO7zx8OHDoKCgwMDAGDFiUP/rr78o//Of/1itBgYGBhEYDoJr3rz5uHHjokaNev/+fagNDXC2GxgYGERYOAiuYsWKu3fv3rhxI3nc3bt333jjDZPBGRgYuAGcBIe0YsUKqQwMDAzcA45M7a+//rp9+7bq+gzOwMDAwA3gvIq6fuhmPoAzMDBwDzgIznzoZmBg4JYIyWuQnVMyMDAwiOBwEpzhNQMDA/eD84qqCkA2ZGdgYOAecGZw//qDhb/++uvBgweUf/zxx//+9z/sKSWEhprUUbLd686dO/gBanryD23lLQScbQYGBgb/BifBwTUS/gmkddj8+eefqsJQtgyc3POIfTCGueAyeA3B1uNBP80QtYnm1FGwrJwIUTUwMDB4WjgJ7l8BZ4nR/vvf/0rz5ptvOm6zjwPchDEUhowZdEZJFzR0f+utt5DhPszQIDu4zQUO7y4EJ5+SDQwMDMKOxxCcWCY0xE1Kvu7du0eCBos52/4O8Vq0aNGwF4VhHBwcLJqjF3mcYA3ogCgM53SnBFTlTbCsDAwMDJ4CT8rgoBVxDYCV3n77bRiKzOvu3bsIUaNGhaHUCosJqtIR+6CgIC6h9AIY0wUlrXiG+LDBFTKla4KGE8yALTs+sXt0IzapnIGBQdjxpAzOJiwE9NevXw8ICHjnnXdgK7I5CAu9bJwdHnWBj2CiGDFiYEbuRkcEOlrE5eApSsgRAyzpZQ/q6gobDS1I6ZifgYGBQdjw+AwudKIEQ02bNq1r1640wUokcSRo6KE515smgIYcl8///Icmql9++WW8ePFWrVqFhlROejI4up86dQrmQolDsZg8MARmIjsEjIGmhFI2BgYGBv+KxxAcVGLziJU2OYAMVXXs2BGBzCtWrFienp5wE5YA+nMFevI1EVzPnj3J+Hx9fZFpUh7HEPv37+/cuTN+MFMXlbZAL4C9zYx2umdgYGAQFjyG4CAsOAg2QSCrCg4OhmWuXLmyfv36JEmSQFUrV67E7MKFC9w9oR4YavPmzUuXLj169CgX0nXr1l28ePHGjRtr164NDAxMmjRpzpw5o0WLRpetW7fSCn8hz507d9GiRSI+br7IS5YsuXfvHty3ZcuWHTt2oD948OCtW7f++OMP5sCUxIzoDQwMDMIEcqIKFSoUKVLEStQcn4Ldv38fQgHQDVdRf39/9Bs2bMD4888/h6EQSpQoUb9+/R49esCAsFvlypWhnujRoyMj5M+fH77DrEWLFvSlOm7cuJ07dzJKgQIFIEqY0cvLC4MuXbowxGeffcY1Nm7cuFRhMeZDUz0L0ChTOn/+PFdampCtaRoYGBj8Ox6TwZGRkb4hQChcDPWjgJIlS8July5dKl26NDy1adMmb2/vyZMnDxgwoGrVqrly5YKDGjduXKxYsW+//ZZ0D8qrVq2an58ffkjZoMsVK1bgpHDhwjVq1IgTJ87EiROzZs3au3fvNm3a7Nmz59q1azDpsmXLpk+fToYIS86fP3/w4MHkjMwS7sMPqZwmZmBgYBAWPIbgRGoI+hCNHI17KEL8+PH1xQ4PD4/vv/++fPnyN2/eTJQoUevWrVetWjVhwgSYjlZPT0+Z0UReJg8JEiQoW7bs9u3bZ82aRcqGknRP901oVPwF6KjW5MmTc1HFA1kkyrfeektzIIOzDA0MDAz+HY8hODImOIVSbALf6eebMBGZFwJVCcqtWrZsuWvXLjiuXLlyKLlLcslF4BKqj97gKVK/Jk2aDBo0CCFx4sQo7U/TcKsfyAoalFaZMQTUZk/GwMDAIOxw/FrV+++/f/v27a1bt1KnCuNAcPAaLANgq1ixYp06dYobJfJ3333HJTRq1KiHDh3KnTu3cq6aNWuSo9F9zJgx27Zt69ixI9fYoUOH4q179+49evQg6atevXqKFClOnDhBEte3b1+8kfFNnTqVZK1Pnz6pUqWCwgIDA/v168fltFOnTtAlN1bYTWyL8zt37jAuqZ9j4gYGBgb/hjdhnxkzZkAijRs3lgqigdcQ4Djk4OBgbqznzp3z9/fPlCkT1Xz58iFkz549T548XB4LFCgQEBCQMWNGEjSYCBbLkSPHkiVL0BcuXPjs2bNwWalSpXr37g27nTx5klbYEP66evUqnr29vUnxVq5cCX/BdBkyZNi4cSMZYtKkSfPnzw8zakqUOLe/fWJgYGDwr3hMBkdJEmfLIhdSJ8p/BSSlz+/CDkYRnz4WtGoaQDdlfRgXAq5m8LI0lKE925YyMzAwCA1O/YMHD/SNLjGAfawi1sF5/FzJy0iUAARBySPZP77kaSEa7qrcTAEyz4wSYAMPUpIPhvhxJ/a3bt2ylXYXLGnCCYJ+gR8zgGfRkCDZ/lHDE4ArRgH2xdbAwODJ4KTYsKucfc4RJ5FzilKnFY3VI8LgMQSnx0PQgwlo4A4bPDysJ+LTYwPsSf3UC1pUFzUh04VW6AzQBZlWOAsnaOhCFT0UxnsDyIBeAgYqQ8MxXcs/wBsTsKbmfOGEht1LgoFBJAcHx/VoAI4PR5icA5ljqAPF2eTAyiCi4EnZJo8kQdwhGajKowLldyEgdoNoWBrRDYT1zjvv0EvrKNjeMMAVZfTo0eWWlRVj2sMB2YeGWuVTHKqqiPWf4OxsIbTGwCDSguOjkjPLYUTmdOgwckgdFhEHj5mugy0siHcAhAXUihJQlQ2CbFyBXsYCVblSasZ7QJAlJa1cS5WvYa/7qasTZNfqYwG1wWi4YggN52z4Z4jUDLU9EX9cOnPCP9hZceDeTd/DRwIc31YMhfu3Thw7EeB46z/CvRu7t+845/846z9ubd+w2mffSeefWAiJB/5Xrlr/3uUWwL9/PYzy4P9vFE6cPbLv5KVAZwXcC9i1fftV19k+EcEBVwPu/MP4kQnKRQCHCFngXICbN29yxmmyL2rOPhEETyK4x8KV3QRnNxegxEbAXjYsGQJVwdHT0mtNPT09Sd8Q0ES1/hwTNg5fFlhoNf0TaBXgNbqfOXPm5MmTvH/oqJ2zgY260GSXBo/H/atd6pVLmjp9/BhvdJuy2aEJPtO+SZ1s2bLEiRl3y5m/0db9y/vK5MuUPlP6ODFirTrm+GLjg0v7W7fpeuTsmWFdWk5atvtvCx18rt+3vZYtn18sd/pxm844lf+PO7PHDf/lt3NR/rhSI3eKtxzZ/395DTbrPcfZ7sD9WUO69B47c1CXL2asO+RQ3DzWulXHDZvW1nqv+JJ9ly2bf8GDO5cHdP1q52kXiox84AhwBm1AYSrJMzi/CRIkwIDDyB5QonF2iyhg9iF+F1VCGGGxyuOhVnEKspbPanFAdCMlrb/99pufnx9CcHAwd0x/f38E2xIbSmQMQkM29CINpETTs2fPTz/9FAE9bx5B3SlVlUPhCc4jM/YuHduy84DgP/8Y0awIobL31sMbp3ev2bT/4R/+yd+IkqRKD6edA0ET+309ePzSh38EFPR8I4pngaCHDwd8mCfPh9/Rdnju12975Ljk8uefj87v5ZmkkOPHQNcPf99v0JGLUjuxdnzncvU6B//v4cXdi+o3aLZm8/bTJ3fkTR6vzdiNTouHDy//Ouk/b8TYe/vh/Z0T3o6W+Pz9h/288xdtMoKmOR3KvxEjk5/jGvDvOLFubJ6iNc7ccVYjIYh8jgN0dsf6s9sIHKJ79+6hR3PgwAFabQ1wdosgeF6CeyzgC1f6cGotvV1VExpVmzVrVrduXZEdeghOP74BKC1GcjAUkIFgdXVUsWEDSKeladCggf1E6IHkvXv33rhxA2M2zJqjEyJQ2RjYCLru72SJC5tItheftZfof8O//KjPnF3OGvjf3Rs3b0k8PbNtlLeTXn74cHm3SlGiRDsb/HDJkBYl6393xw6EoIstyqaL8kbMrUf9zu6dhecPO0/0tynm1qFE7/x37NZLiPdv33a8r8CN/eWLld6J00foVTPVG/HKOvb1zq7/vvHG9OU7SsZ7s+GEvY6203Oh43XHHxHqH7f3+mw5denarg0Lx81YEfzXw+Nblw4aMeVKsJoDyiSP1WT4SlUiJzhc+lxIMqeDEnnFihUeHh4cRpju4sWL6Dkprkcv/OOlfGTouII+uoQCp9bS21U1oWESVIcMGUJZr149cmP0sWLFokmriV6UJPmxkCvyZ8youv7CA6k12Lx5M2ndl19+qc8UcKUujkk8ErQikQdanycgRpy4+vbjoV0+KbJXLpDIipY/Akd8Uan1mF/Kls5nNVp4I6qXZyyJc9f+XqFpx/hRolTsNqFG+jdSRn9j2tWcK6Z2j24HAovt+PzhzT/u3g8OusE83nF86OFsPL3558v3/1MoUyLk/8aMqf/iaPvKhTdjZsya0Ko48GDn9vMeGbI4PmeNHsfjP1GCLl5MmzLarOFjHSHy0PrNwuBHN+i7fuWKFstSsMqBE4eae1fMU+6jVdt3fv1Fg2L1vrPiKXbVUikm9Rt2LwyfVTgXzr3Ac/F2J/5XrVrl6+v7tvU1Bj0v5wjio4nTxJFUlqcuEQZM94VncE8FRtTbAwGCq1Gjht4eLDpsBWglBWNlAUwnS8HR36piRhOWSuLatGlTs2ZNtR4/fnzp0qXly5fPli3blStXpDR4Ctw5/VG5krO3Oz5AsKqXJvRtBx15Zf0odNJ7y3dtqdLVjyqTDr42Z+T3edJ4wX+Lfg+wVE5sGPm5R+KSjm2+uSX629GXH5XagYUdSkR5M8UZZ84t3G9bvUjnyT7OmgP330/wRtzSX1kR4BvrjSj9J2x+eGEjs6rZumfXOvkZcZed7v3v/kfpPTNV+xpxVptCbyRy5H27J7eO8maq69YDrBjyYZQosc6G7UrrfrDPUaNGjcqVKzdu3Dj7xuPj4wOvcelB1rdTucNyMO0u4R+OtCXEbzJA2OK+VwMWC24iqwJQ28cff8wKzp07l6xKSwl56SetVLHRz16dnR8BM1I/Jk8rr6Bu3bpNssDeeHt7o69WrVrVqlUDLFDFG2Z0RJaHV/zUrxcsQs6cORs2bOisPwn3Z43ofz9D9QblczgVFvw3j0xYot2Ne394vuPUOBB4rlef4RXaDMrnSL8eDm5SbmWUCusmtulcLlW/dVH8gs4nffRrxCsGN63Ze7//jV0xL695O0nlhYf/qJzJ2TTz80LeP14+c+dMSmcaESXKjd35S7Qcs2FnPsffpnGiU5n4Q8+Wuef785t3dr0Vs0Dnyfu/b5AjSvD1W3/er5Ih1aGUDf12/Oj4Sw8WPsuf5HDu9lt/bD+3S9kWv6T13zF219RO7zZbdiXocNw3o6wd3aDc57NO3LmfNtL/lvOYMWNGjx7NSSlYsCDl5cuX8+bNu3///njx4nE2OVw6gxyWiHJeXj/BMSIEB+NQcpdEo4sqHKdWSt4bzIpWbER2VGkCtsDS06qb6bBhw9q2bYtAtX79+teuXePlQys5IPZ6Qb3ixwxXIJOtWLEi72pn/Z/wV9CMwd9tD04zsEeL0wd234kSL1+2pPf+ejvq21FOrRpdu/cvWzbOj37n3OwVO0tUrZXo4bnOrb9KUbl1i2q5d2zZlbN44SZ5Ep7J2cXnp7ZRTqx8J6v3jos3cjn/LFaUJX0/rv7dbzfvHY7lv/Y/8cv1mbu/fY0cb1s/oNsz6bN8TWYeCQjKFNsyjRLFZ0qPDvMur1861kFYwVcXLNn0bvXaQRv7Z6w08OQf/qkPz/hPziabLt0rZl1g9y/8Pl/dYVvPXC/o+GM0Tnhnjv17rnb7f+4++YuCLdanu3tohs+EVsVarvS/fzLOG1FmdytXt/+F63cPxfm3nxC2b9/+9OnTnp6ezrpbgIPA0eD4eHl5QV7cTwcNGoS+S5cup06dWrhwIbci3VVRcvoMwT0dGBHGUYIGryl66tatCzeRgsmGxWVZgT6hI/nCno4kbtZSO56C7pT6+OC7777r0aNHpUqVUqVKlTZtWpGdwdNiw4RO73068I3/vP3WG38++CvKjB1+CfcNrtxuerOWjYJvBDXo3LNI2jhXN49NWKLlZr+7h/qWazFq89vvRP3z/r0o7yQ/cvVc8gtLC9X+7usBfS5vW3k7SZFOLWpFU2TdufRRqRyzdl3/efupuvmil0mVastfOXb/tj57IiuDurL5zUSllp/5q0JKy/hhcCfv6m+W6NS3WRlqN/bNjZv7w1lH79XJ+KBrw3rnYmd/6/zepOVaf9+sfPD1s1PGjJiy7LeBM5YUSxvT6mzh7uk0sdJcTv2+/5GlLfPHnXIo/pVbv49rVrz71F0+l/8snPA/Ld5NvCNDuz1TOv5r3JcsWZJ0JnbsR9TrLuA0AQQPD48UKVJw9H7++Weq+q+N/fz8uKgGBgbCg3HixLEPndU1vOP1ExyAv0CMGDG4jepLcKRan376KU0zZ86UAfzFcpMnMz19S86V4Fh66A8NBpi1adPm5MmTS5cuXbJkyciRIzGg+/jx41OnTs3rCA5FY41s8CTcvXk18P7Dt94k533wn/96JEgQK8qtC/OXrIuVPGOhQoVi6wcQf90Luvu/GDGj3blx9d7/3vzfX3/evfdHzHiJvGL8lxPzR8CFTTsPJUiTJVv6ZP+fHj24GxAY+CDKW29H9cAsyv1bV28/jBsv9iODP75vWPloqgZTe3g7NP+7f/rkqdjJM3s5h7t/6/a9dzw8o9L2152923e/kSB9rvRJsPPzPXji0r2c+Qt62VdT4a/gGwFBUd6OHtszZnDAdSYZN27se0E3b9/7K3qsuDGDDxYs1njI6h1FkryUH7hFOEybNm3FihVkcxkzZixevHi5cuV27dpFokAWwiHSR0DWmYsgJwhSeL0/ZAAsHBQGNyFwnYTdpG/evHncuHE/+eQTVbGhSR9zUmWqSq0BAt2haV0/W7ZsCWtbnRyYNWtWYQuHDx+mO5bS48GG/LxKOAf++9C2RgJw1QNVnx+40iKER1zeV65Y6e2uX5x7aZjy/eftB81xViI3+vbtmyxZsvLly5MfECFoSFffeeed69evI3O4ODukIOE9eP6O1//W0jzIv5BZO9c3w6BBg6pXr37s2LFvvvmGKskd4B0iG1bZepE4oISOd4s+xaMJpkNgPyjr1Knj4+NTpUoVLJV1Y4weWIM7ZCtJf3VgJvYcrCdwPAKwlVC2NTVHQo0ejWsVWJ2c8jOAvhooPCJehkGD+yR+I4hndmpeDh7cCy5YrekX9d931iMlCCrKiRMnLlq0KGfOnL169Ro6dCgRgvLWrVuUChUlbnZVUEwCZz38IVx8BgcfAS0To7O4MB2vC/vDjg8//BAG1OcCQJ/ZwVMPrF8+pYleeKAUvvjii927d//6668yRiPiA6Rv9la9GuiNZ3OKPXSIpZaMJdSGrFZKEToCwMD2o6pkN8X/eFyn+HKgfXFWIiu0CGvWrCF9y5Ili5Q3b97k9JEWlC5d2s/PL168eJhxdmgiyZANcA1LacIbwtG0OKs6riwlJUsGf3EtRf7pp59YR/tvDsNQ2hUELq2YSW9DnxQgaPUxhubI5nQ5tUxeM3hS5q9HBmiYGPOEDZGZP6ytZwdMGxvZSxM58NKDM9wey1cJQo5MrVy5crAbQagPgvTDOqquUUdMApRAGkfsWlA1HCJcbDAHW6tmgyWLFSsWgj6bixEjxrRp03iTNG/eHHtWmdcIraw+V06lSEDeAN21QwjYaGMkvPqYZkQIi9IRCFYuxlRtUnY87SOoqpQNA2aLJU+njrSqBOh1h1XVwOCZQbxxiK5evRoY6PijA3a4qokgVNQpMqk6ItWCo/MjjpMcDvH6CY7VYeFcQfLFOpJwcYyhNh1ylEuWLIHjvL291ZHkee3atdw92R6qmEkPXFecjkCetXmveD8YjmgQJQk8GvwFcVNS1QNiiZkmiUyrPtDldUr6iY3tASWgark3MHguEJ8cN+UThByZAeeFAFOTgEy8OVgtor1TXz/B/dOSscQcdVo54dbp/h9Z25w5czw8PKZOndqgQYMNGzb4+vpiyQbQimCtv8MbLGCnSPYOqVXyKwbj8jiUPBHBJArTQwEFk56XCNu6devp06dhdogbDZTHg9PKQ2GME5WWYwOD5wXhpCOmD9c4OACOQ1awWVbOj4wIQlVtYBOeo/H1ExzQGtnQmrLEOtIxY8ZE0MpGjx597NixEyZMgOOofv755zt37kTg/Iu5RBYk2wEBAQiucHp/HZtBcNjEqpwfoHTVAynh7u3bt2Om6zl6OE4Ggnq5djQweGYQSLxN9d4FHBA73mx2AzTpPCr2gLMhfOMlEhxrAVgvldI4CMaCbCRrZUNABrxVuIRio699gI8++mjLli2SgfRsj6gNgTJDhgz58+d3ND+Cc08sOFWvEAwqjmYFmDDcTXamuwClBIAlD3vkyBGeETlOnDienp7wO6tBK01aCpwQgnpSa/1MNmfwXNC5UJhRIhOT6G/duqWvnSLbP/KSsQKPJvt0hx3YkwzSEVCVgFKlDVXVBUgJnPWwwTHRF/41EWbGYcYViyXqEWEh6BjrqKOUXmc1BFgC8hfA64UqK37lypVixYrpWmrjzJkzKVOmZBuYtj7AoiObARdQlUaWWprnf7qnBePqWRiayTCxy5cvc9eGgtOkSbN27VqWomDBglD5L7/8whJlzJgxX7586ElXc+bMeeLECarDhg3Lmzdv2bJl9WVL+FGLRonbV/9QYQSPpuk9efFf19YY2GALtP6ue8FN4quvvlq6dKmHh8f169f1OR1Nij0EDjJHDNk+ZWEBx4E4xwnd9c7W6YAcKDUEJTYhzq+agDRhAn1e+G8yMG/9UoGAT4DAyeRJaAV6OaDnMZzdXIAeY2zgLzpij3Ly5MmwQKpUqZxTt9C3b987d+5gjA3OEUQBcqKOgmMSL+LpnhbMKsgCa8IToTl06BCblCxZMjsVXbJkSeXKlRH0q7iLFi0qV64cQu3atXn99OjRI1u2bFWqVDlw4ADd/f398QaJ22trjfNi9u6ZoZmwm4Bll6yfkGhfAHoZyBggo1QTThAwRk8VIMi5wauHtkaydpCQ43Cxpwi0Umq/KMO+U1jSBc+UhDEOkXHF0cAnBmpFI89SqiPy04bEU/Bu2AE36wNyZ916k1NqSOYNuHlBz/YKhgDnn1YYPXHixEr68FC/fn0e+/Tp02PGjIGROfnoO3fufOzYMfI7DICGpsrScLQ0qF2+FrAO8DJvLfaSibGRWbJkWbhwIc9YtGjR0aNH16tXjwyOKkm0/nIDj7x69Wr6InTt2rVPnz68hGjVNwF5QIxxyxLxyGisNXttj8kc7NGZmMAWs7kkoUxSrQjoFa9Wv/8HeoytDXS4Qn5yKDu7GbxMsM4cIsUtu0mVbeJ8EZ+UbJB9eLWzkkPA6evvUNwSwPrsD+dSYq93trzRZLtVR6oSwo6XQnB2dFLq4VHqkTjhaFg4TRpLVx60oe5Y6jywBKQ/9FJr8+bNOe0rVqz49ttvixcvzkUPJVyAvZZeZuyNBAE/wFl5tSAUYCUvLy+xEhreXSTnhE7//v0hcW6gMD6sTRN6rVjs2LFnzJiRLl06Hp/nTZ8+vQiOJ8WhQNXGa3k6rSr7pS0TNH+mxwOyHdpHlDw+k1fgAnVBkAHBTSsd6YXecm/w2sA2sR1sBG8pmIiwBGwZTejZLyIWQVsZ9v3CEic4p+REQwhEBaFiH168oeG8IKNRF0r0loOng2NmL/wzOJgFP0yaZ2AV0CCIyMhfWCYEZs+zYaOgd3T7O2jCD0+IPaGPPZZA6+40+jdADdoD5gPQPP/TPS14CiaPwFPw9mMClL6+vr1792Z65KRx48alJD8lTcOMW+ry5ctJ7li669evHz9+vGLFiufPn798+fLmzZs//PBD7ghyyALydKyJY5gXtHfPAybArknQrIhga9Mcn1tr358AFoESS56O5yJmtHdqdcXrfcxIgrAsMjvFNiFoi6V0RWilgkQEJ4FTIJYIAbgC1iMGKPHv1D4lXgrBMXUmjZ/QMc0h11MxIhkNw3H+YWtn8yOgJ9wxA3QRneOTN4mcI5D7jBo1ivQHe4w1HGa8cDhXn332WdOmTUWRNOFQnp//6Z4WzIEdYgJsmH5ggoYd7datG4kb61C9evU9e/ZAYTT17NmTtBTKy5Qpk4+PT6VKlaZPn46SG2usWLG6d+/OZpH9sSY8JntPFx7QMcwjvPoHFHhAFp+SDaJkhiiZJPOxtvHNzz//fOPGjTw4j68uRK3e23Rp27Yt3I2AE9ZEbwIY/LGP87qeMfKAHWR3Ll682KBBA/aLnJptQqNtZY/YR8KvV69eXDv0GsNAfV0ReqfwDBBwix+ONn0XLlzYt29flAQAiBMnzg8//JA1a1aGw4OCxOr91HiJBEeMjhw5kokmT54cAiLvSJQo0ezZs1kaHgwwb8YCoWfPNPDAkyNgSaBLibG9lAkTJmSIypUrBwQEYMOg0AfsCRFMmDChYMGCrt8mCYc4efLkrl276tatu23btps3b5Kmofz5559J01giHpYIyJAhA7zANjds2BCDTz75RH0jBNgRNstZsa7e8eLFq1q1KsGmRI995DF5WPaLfVyyZIksQ3Q0eF3YsWNHoUKFuFikTJmSaITI2DjOINTGBk2ZMmX8+PGkERxtvZCc3VwQWsmOq9R7Dj+c7o8//njmzJnNmjVDGRgYOHfu3Pnz59esWVN8ynDPTHCOkV7e34MrUKBAggQJxowZM3ToUFIqhjt8+LCz7bmROXPm9evXOyt/R58+fWrUqOGsGIQPZMmSBUJ3Vv4OSFz/dYZBuAIExw3JWQmFNGnSTJ061Vl5Pnz00UeNGzd2Vh4+TJEiBRyHQGJEokP6Iv0z4KVkcDZKlChRrVq1du3aqcpirVu3TpkngLwhfmb/VPRM3gfN8ybJkSNHv379ateurVcBNM8bRpdi+JRB2QCtDhqey9HZwgt8wLBAQzOoshKNrpQTjUrdYWniWbQs2DB5Xed5NMzUBWCGklIbj2UIaIhXCWbIzDUZSnaBJyI69cg8Dtfz69ev79u3j13Tg9DF6uoAt3UuO9ov+uKKrcSDvUqv/okiOTieadOm7dSpU8uWLX19fWPHjq3AY1/sfIo3VosWLb744gt2TRvE1oN/2iyaKAlp4oEuXHs9PDxu3LjBxa5Ro0ZEyIIFC2QZP378UaNG6SMLvP2TwzCBUV9eBle4cOGvv3b8d20gKCiIu+rixYu5jHCXTJYsGRcWFs7T0xMh7ND3+1kCJr9ypeP/62UzxPT6Wg0aVkdPZxCusHGj47+mJ8bYLAT4CyB06dLFaWEQnjBx4kRuYPqLvhATu6bPmqiC9OnTQz2pUqXiSOoge3l52YcU2T7aEqQhy8GnqgjQ5ciRI7ne1a1bV24BrbNnz0Zg0OdkpJebwb377rtQp/6THq7W6dKlW758Ofzt5+fHS0BjaThkq8e/AGNe7/Ajr/dKlSpxUS9durSzzQUDBgwgxV21ahX7wRo5teEDel6gtxOC67O7ykp/pLF72UATxkV7BeBZmC1sxQuGV1ePHj327t27dOlSK1O/R1JGgBUsWHD16tUhfoVOgOBo2rx5M2Z58+b98ssvubSSOPCG5wCEn8eMJGDBOTVx48Y9deoU6cjFixcViiHAVYzTTRJH8sUu00sXC5qIB0o0VJXuQWfYQAL67gRcGT16dAwQSpYs2apVq5s3b7pmcKNHj+ZyRkQ9Z/7+UgjOdgLBFSpUiAsjMs/G1XrLli3Zs2e3rJ4X3GiqVq3KYSDLZTiOVsyYMVk+Xib16tXjXWF/aG3w6sH9go3m7umsR4nCgWnbtq3+F0eqvKIoiX6iuXr16hkzZpwyZQr5Pi+wwYMHWz0MXjP27dvHC4lzxO6QKwAuSRBTrFixoJ7ixYuzZfoNnH8FfUN/WcIGBxbSsP9kd8KECUnrXgjBvbqfVTFRoll/5APaRtBHLTyDDMICdUGgF5nC8OHDeY1wESY7eO+99+DT3LlzkyeSC0Cm6gJYO7u03y2vEqFHtGdCKUiPYCsRJKtJUJMNp9YFj1W+JDA9Sl4tvMN5z/MOY4M0bW4fJGWEtaqAewd8lylTJr322LICBQrky5ePm86OHTv0be21a9eiRMAhG02cAEWIRjR4ZWDNSb0hlw8++CBLlix58uSB0SpUqFCiRAlOWa5cuUgslJ3pcyHAlgnsGnFIk0CVeND/kMfBxwBjrrrqiJKwcbW3E8bnT7ZebgZHBkscDxkyBJmQTZky5caNG1kanodnIHAR9NWwMELLgSuyXJI13idUNRYOWSMtDZ65CJPEIShtBvRVd3v5Xgs0B5VAk3edIZBSBxswYUUSoFWlzEI/iwxeJdgLBtXiM08E/QABqiKJmzhxIvGNhsSNMOPWiT1QBkdH/USCvBuy47XEPcU+HnJorc3zxqTB04I153j6+fmxQWwEVTZLB0qRSUYWJ04cNguZ/aJVZkAbh5433NGjRxs1arR///6FCxeSqsNr6BUhWEr45JNPeDsuWrQIGdgZHG7lUPpnwMs96jynU7KgqAWsBc8P9HhPC1ac2yh5chILiS2wKCoBSpae4RiCOQDWiFJVp5dXCG2SYE3HMRNBVfS2pTRABhx+SrUCV0sJrwzsGgghiN2YDJOkpMrMFfRcXg4cOMBbmlcR7yTe4WnTpqVkdyAya+uSJE2alMwOdvP394f+dN/BIU7YZTriFhnPgCaDVwaOD8czderUbFOiRIk4VpTsl0rAEVMuxtboaLNTlMSAHbEkfaR+sBuyUhlK3GJPYFMq5Q+xufL2QvBKTzvPr4Nhf/7ytARnxbnjV50IfZaG9b1n/QgVmbcK5wqBUoIOhrPnI8jDK4Zz7H+D0/qRPfP/p0dQE3CqXGA5eClg71hkwpdlp2QsvcnVJA0gOqli0717d1J43t68nKEwXt0o2Sx2R66wBHql87rGWL9sixm0SGn5+39oGgavBiy4NoidsjeLY2WDfcRMQcjbiISOc42SI2ltV5QyZcrs3r1bMlCEsLOU2NOX4y8GsINHsMZ3TADnEp4ZryGdeR5wMIBkPbzjlD/6hQdVWWVBS/OcC2RgQy8krTNVQlwvatYcQdkWVSIYG5TIw4YNW79+fadOnZB5ddORnSKa9QaSjN7HxwfNhx9+iBlsqL44sffa4DWCXdOOA22N4KoHvLpEXl5eXr6+vmzrL7/8oiYhevToElx7vewtjmAEB1gRLQrLJCLj1HG0EHTAhH9auH/SG/wr9A7n3QsQxHSsJ1SFQJWci70gv5ax3uRt2rQ5derU5cuXkTFmj7BXX0pk9P3794fg9LcGcE7JYWBDzWZFFLD1yrh1Bk+ePJklSxab0QS2mJI9JTakeQWIeARngxNig2Xl3SKZJhZRZ4OqBMFVNnhaWIvqiE4ilcyLBYfCqLL4UBUvcGRFOdxk78U333xz/PhxfX6sPSLuKcVxes/jVlkeHpDVHQGNwesCW/BYsIkhIHveTNoyvat27drVpUsXXnjt27eXARFCqZiR5hUg4hGcc5mtw2MLrKwWN4Te1tiQmcEzgFDWYrKGXEgBwYqSIIaSqMJWCHCfzHQVRfj6668nTZrk5+eHpW6m9IIWqdI6YsQIXvi1a9dWF4AgtyH2zuC1gx1ha0KATVdSTyuCkrjFixdv3bqVu+qgQYMWLFjQqFGjHDly8P7TR3Xy9goQwQiOFXSFU/t3gnOuugVXG4PnBCtM2iUOspb/DS8vL3iNJmR9jVNMx8pjCbvpltq8efOyZcvWqVPnzJkzkCB+7K3Zvn37tWvX+vXrh6zsD17TCbFGMNv32qD1DyMICRI0YoBNZOvpPnTo0GPHjqVMmRK5Ro0avOFSpUpFPLC/7L41wqtABL6i2nCusQVpLLpzQFUhtMbgaWFTj5IvwNUyZ86c+fLlK1q0aObMmRs2bEj4Eu5YEu6Y6T7Su3fv33//ffPmzcgo2QhtFldXgr5q1apKBuFH9PSl5JyY/QpvsM7QY8DG6RuO7BpvOG2r/m9PhDsW4L7o0aPr8w15ewVwB4IDnAfgrPwDZAOcdYOnhNI37iBkYR07dowdO3aGDBkGDhx44MCBPXv2+Pj4HD16lHe16ImgJ5SRb9++rQ9fJkyYwG00ICAAIuMMQHMLFy7k8jJ8+HBacSvSFIeCV/medxuw7LxR9FIJI9SF0ll/Vuj9xD4icz8lBnjnSc92a1sZhSp4/uHCCPeMIYvHHHDWH+GxSoMwghiF4/RVAIiMF7Lv3/8LR09Pz+rVqyPowCisiXiteeHChY8cOfLbb79Ztg6cO3cOsyLW/0QhEPp00RkAZrOeAVq0F8JZYQQjEhiBgYGEBG+plStXssu8z2gifWMaAL02FBK032GueEl7bV6SBmGF7oyEKTJs5e/vTyqnJkCAbtq0SbKuKsQxxwx7ohxaTJo06bp167jD6kO6ChUqNGnSxP7tHIMXAnZBcNZdIKJxVp4VTu9/h/T6ERMyYcDuZ82a1erhhJ1UPv8cngqG4AweDwKRoBSso+EAcSyCg7Pat29PKWOQPHnynDlzIqDUu5qOBDqa6NGj66VdqFAhPz8//SBVf5mdY2CbGTwDWElri5ygKqVKICWwzJ3KEFBTWODs8HcwhN5npGnLli2bN2/e8uXLMUavfJwSKHejFCe+GhiCM/hHOOPXAlW9n8m/yN2qVq0Ko5GX5cmTx7KNMn36dAmELxkcXYjsP6zfWKCjPpoh4sWPwMvLSwLGQLLB00K7ozVkqSn1ttA6Sw+weVG0wiaGAEqYSyPy3kLWD0+ZD0rA0K5weHlVMARnEBI6M4CjYkPVaNGi3b17t3Llyvnz5//mm28gO+4j8ePHT5gwoZhOt1HgeGVbP0gVLeoY4MQxgAVabUE2Bs8D1pZFZo+gM+2XlDYsLnoM1Con/4rHWqJkUPZx586dvOc2bNiAEs92KaivY7AwD/f8MARn8CQoHPUe5gJy+fLlatWqvffee71796Y1ICCAa+a5c+e2b9+un4Hyfob1yM6o6phZCYQzraAVjcOvwQuClRI5ciJ7YREs4nIwC28OAPWw/uRTrnTzbNBwIYBbva64nGbJkiVJkiTMQT9wUC8BS5USXg0MwUVqEIiu5wFIlt6OSMKX1GzChAlVqlRJlixZnz59ZMmxuWP9l3GpUqXChgspx4mwlhM0yEriRHCusDVWwL/Sa4s7QasH9BKSrCZ2kBIle4GSKoKqWnxK4Ngqa/dt2dp8h7HDi7XR0ghoJKg7VXzyVtuxY8egQYMmT56MJjAwkIBhUGIgxKxeMQzBGTgDXSBwCWhyLsU33ETsBgUFNWjQ4MsvvyxduvSkSZPQ6+ua0aNHp5XUgHsrUC+9zPGjsCa+dQAcIxm8aFhU40ixWXaRCOU71u9LAfRUec0A3kP6yg4y2yF7+oq/2Dv2EbCzAIFgoAnYAyGrC8ZoZANQUl25cuUHH3zA+w+Zt5o+Y9UEZABs4ZXBEFxkB2FK4BLuCmVCEIEgRiaO0ZOj1apVK378+MHBwf369aOJLrQS2ZwEqnYQA8mUDtcuQOmUDF4o2CyxDNDGQV7bt29v3rx5mzZttm7dumjRos8++wz52LFjP/30U/v27QcOHOjr6ztmzJjr16+zlWwNlMeWsZt40A7i2enU+lAPPSV67AE23ECxgTHRUyV9+/7770eOHIkSPyhdf8L+GmEILlKDkCV2CVlkcRwBTckhIeh5DxOmNWvW5LWs2CWV01/iJ1+jSlKg6Eejz3p0PJB1SAxeAbTmwOYmMG7cuB9++AG+CwgIGD9+/NixYyEjiG/IkCH6M23wHSVd2GjM2DuBrWdD0QBascEnegTiRJRHk3iN8KAkKoYOHVq9evXYsWNjhjHhwXsRM6qvF4bgIjUIZQI0ZsyYeuVaUe28WtJKQFesWDFlypT6VjpNHBIZQ2E6G7JEBjoGaGzZ4GXDXnnAprAjKAsVKtSkSZPixYsXK1asUaNGefLkmThxYqpUqWA9dmfYsGHp06enTJQokf50FR7oFSNGDPuTBL2uEHAonzSx+7zzZBYrViyUkB3KK1euZM6cefr06cjEDOHh4eGBHB6SOENwkRqiM+4UvIQRFN/kZYTmhx9+yMEAP/74I/cR7qfqghklB4NTQTTraKEU5amVUoLBq4EWXJCGHAr2kcxmQUwI3bp169y5M2+1ypUrk8rt3LkzV65cs2fPXrFixYwZM0aPHl20aNFDhw4pMSc22FmusSghxP79++OBC2++fPn27ds3Z86cZcuW8bZjlLhx43777bcYK7lTUBEPwBr/dcIQXKQGgai45H2LwLUCjoPOmjZtCqPVq1dvwIABmHFaiFp4EEuill5QG+dEToDjYFlw1g1eH9gpyq5du8aLF2/p0qU//fSTl5fX4sWLt2zZMnLkyIYNG2bJkoX3Wffu3RMkSMCe1q1bF3Zbu3bttm3bSpYs2a5dOx8fH+IBXLp0qXHjxmnSpOH6uWfPHu6h2bJl+/3333Pnzg27ZciQgYHwQIp369YtAka0CIgT1/B4jTAEF7mg6FcpQZwFryFw+yBeK1SowDucCOZtjxJ24z5CTkcQY08QK2UjrDkD0sjbY4GB4KwbvFDovRIC6LkzQnALFy6E4JInT759+3YoLEmSJBcvXqR17Nix7CmX1kGDBrH748ePhwShOQhxzZo1fn5+lu8oe/fuRTN16tSBAweWL18egkuXLl3btm1hRm64OXLkYFtJ2xUJuu0iaw64JU7k5zXCEFxkAbFI2kUJZ1HygqVKIFIFxCW3GF7svM9Tp05tf+gmYEkr9xF40A5fSmyIb2RrBIPwBTgLduOCOWrUKLa4V69eHTp0KFGiBE1KyRHYcd5ncNO5c+fSpk3LPXT48OHFixe3HDg+YrNJiu3WR3U3b95s1apVnDhxcAJQKokjDABV3o7ECRrZv14YgossIKAhNUqiVsEtEMFEJIK/v3+zZs0IXH3TDRtSM4yR6cgrGo6z6cxiOQcUxwgoXaFWZ+URHqs0eOHQ/n733Xe8kwIDA5GXLFmCUj/lBL6+vjdu3EDgvnn69GkEWuvUqQPZ7du3j8TNsnL8/Sv29+DBg8gXLlxIkSIFwpEjR7BBoItemcQG20oYAEc3a6MlvHYYgosUIAqDrf/NTxxH/FECNETw/fv3W7Rowb2DS41yNzTErvoKkF04+VTF4F9BSsUOkpdBWPrBUZYsWXLmzIkS+cSJEy1btsQGviOtO3ToUN++fRcsWHD48GHeXnHjxi1ZsiS7z3aTys2aNatYsWI42bZtG7fXmTNnbtq0CeNp06bhn+Ahiqwxwykcgf7+++/fvn1769at1Kk+P/vaTlia/PnzDxkyBPnWrVspU6bcsGFD7ty5WTuR/QsZzuBfwTqz5gBGY8GJY2IdZQzrf0ho1KjRvXv3vvjiCzaLUEYmcDEmuVNHOdFHbwhPtWV4UMmOUzK0HCZJkoSkAEFVfIZwi/FTDWRggyVl9divs2fPkoUpcSNTS5w4Mdn6nTt39uzZw/pfvXoVM2Igfvz4SZMmheAuXbr03nvvsey8DokBQEcYjWrq1KkzZcrEKYYQoYuMGTOmSpWKcMIbZiRxdvom4Jky9A5Kr81VCby9vRli4cKFsuFdO3r06Fq1aqn6PDAZXKQAMURJ3APHReI//yEiiWyUH3/8MaHPi7pIkSKwGzcaxRzHAzNKKEmgqibLpQMEqOCsG4QPsEdQz82bN5MnTw67KXOHoWA3UjP2ndQsXbp0hQsXZtNz5coFu7GJ6dOnL126NAKcRXiw43fv3g0KCipRogQ5EOyGH+iSXuXLl4fdFEt4Qwi3MWAILlKA+CNlI0CRETgAMBdxyVWFfG3x4sXoCX2AjUq6uMJy8zc8VmkQHqD95QqJzFY6XkpWUhYQECANm67fNADEA01o/vzzTwUJSnGWXm8ouc9iQ1/0VIkQNOqCZ3iTEnvH2OEMhuAiBYg/7hGEIK/cmDFjopkyZcoHH3zAlWTGjBm85EncaAX6YT9xTIkZGsuBQQQDO0jJJirvZh+hoVixYiHATSBatGjYIJC262vAMsaAKtSGBhmllb6/ZbMYpXhNEQUhOsYLrzAE9ypAHABnxUKIKghtI/yT/p9g21PqPYys17LClGrfvn0bNWqkTz10bVEQ81bHEo4j6IlgVzhcG0QQsNdKvggANldhoE2kpEk/EIenuIRKz51Un7jRSx7QEwYyU5VS1EaQANljgCzPlOENkZrg2DDBWX85cI7hAgJOMee0sKAm4Kw/wmOVTwDGRKHCWrcJlMjEH0GM3LRp071792KzevVqNRGjNNGR5E4CesUrpQ2qrnBqLThVBuEDigF4h61hf4kBRQJVlGjgOAS4jJcZxrqEohRbyQY9JUCJTwUSpAYUJ1RhQHqJBx0Du8CKi9cfGJGO4Ng2AfnVbACjsP3WdjthV50WFkJUbWAMnJUwQPbEJWGKgFvFrt63LVu2PHfu3OTJk2miipmWQpDSVWMQQcGOA7YS9gHaU/I1BGXx7LUdFQjECQEDLUpWYCCLyAghB9U9+uAC/FO4hjdEOoIDYTzAmAnO+nPA6ciCU/XP05CZDac2DHB2ePTbMwpT9PYLtnXr1mfOnFm0aBHvbb20Mba6GrgVRF4IoiSSL33sECNGDH3choEYihIQLRCZ6EzBo6rDl5W1YUN3NBEuYCIFwVmn/v/Bm4rS2fYIagLWi+r/4Wx+DsinXo9AblGqSTYCYSRjV0vBafF3YCw4jSzQUcylINYrumPHjmnTpr1169aCBQuIdXUXHAEeCs42g4gJdl8vMHafrE2X0xYtWnh7e1+8eHHEiBHHjh2rXr16smTJ2rdvj/2yZcuyZMmyf//+qVOnZsyY8ciRI/JTo0YNuiDoJwz4wbOaIgrcn+C0JTYLcP6RpQTWcXaeZ+kBZGRDTc8DHGpovKmUgN5pYcGeBlAX4kkIYWkDvSCfNtA4xvvf/3QZ6dmz59atW8uUKTNy5Eg0RDxNb731FmYMCg+GhutkDCIo2N87d+4QP/rCY8KECWfOnFmsWLETJ05069aN91yFChXgMkgtc+bMR48ezZ07944dO7Jly0bAHD58uE2bNl5eXkRCs2bNbt68iTecEDmW7wgDdyY4tgRYJ91JK0BKp0U4Qwha0VTBU0UVTrhKwONBQUFUmzRpsnbt2tWrV48bN05fEIG/8ImBYTF3BQHDLvMOI4njsqmN7tGjBwHwySef1KtXb8mSJZDdhAkTqlWrNmTIELL7Bg0aUI4aNWr+/PmbN28m0x8+fPiqVasWL178448/4geHHB8SQw0RUeDmGZzYASCoKgGN1e7QSAC2zF5KAFLaTQi2/ATIRsaEFw5d52CZhBQoAZbQE12kFNQkOFWWUoEbQokHyItY5PXLi9rX13fWrFmxYsUKDAzUbYW4p8RMSZyzp4EbgcBQvMFowcHB5HEo4SZPT89vv/02QYIEBIAsb926Ragg8DrkQiolyR1JH2Xt2rUhQagwXrx46CNizLgzwbHHbB67oqqIg6o+QKUJA3YagT0DvKaoqhcCGuxREhn37t1TxFAFCFRlacPhwgJ6KIaSXnrjIV+6dAmb/1r/BxWtAsZ4Q8CGEjMZyxvBxDyZMBpmgoFmq0nKD/ZSYoZzQC+U4r7y5ctPmjQpadKkTIOnth2+bUGrgZmBm0Hxg3D79m1ChRhDJgKvXr26bds2ZPhLf0QkICBAF1hegQMHDly4cCGESBQRGx4eHq1bt+Yau2HDBv0aA26JH4Uf1QgBd45vNklkwTFmV9hmdg7hxIkTtGqTxBQIIhTAqwxi4vUFIzi8WP9bO62iGOyR6SINVZQ3b96klIG+OUkrveirgABp0qQhkiAaNICBoBg1MT1NEuCQoKQ7NlQpmTOvWT8/P7pQtX0iYEBHBEYEp06dunDhgiaJMRMoWrRounTpsMHe1ZKOmj9AaeBmYPfZbgKeDI74EYU1bNiQMKhYsWLs2LGXLl2aP39+wmD9+vUrV66k9fr169WrV1+2bBlM1759+zZt2nCNLViwYPLkycnj8INDAo+SyLEGiRhw8xc4B5hNhXRgE449mjNnztSvXx8WEL9IScnmiTiIhmjRoh06dAiZCCA+IDs0dAFiGdzSJHagpJVdx54mDST6oIoBGjxAPdeuXYtq/S1AdVRfWglEgENNRt8yV4DqcrFx48aOHTtijJ45oGEaAA1VSrj42LFjmTNnfvfdd+WBVjxwLcUnAlUG0nyYG0qAANAYuBnYVnZc0YJAIBEDw4YN27Rp0/Lly728vEqUKDFv3rwFCxboD5rThbAsUKDAxIkT4b46deqggQFJ6FatWlW2bFmihRe/QsiO3ggBN8/g2BIEdgXotnju3DkyuC1btiCzqQQBpEMrVWQpiYlatWphiR4lTnCFEuJAFrTNCGJAnCDLmF72fZBQkyXhoj9IJRsZ0xfgFmCm4dBghgeUsC2hScCNGzcOJTboscFSj4MNGmxgt0GDBl2+fBlZBvTFFbTLTCwqc87EwO3BXhMDdogSANBTrly5ihcvXqRIEVp5cZYsWZKULUuWLNgQS7t37yZ9Q37//ffpqJcrN4DChQvrczqCnFbbbUSBmxMcx5tDzmnn3hcnThwuel9++SW5+ocffshLCQOICb6bPXs2O3ry5En9+VNeYiREc+bMkR/ecjt27MD47NmzvPfweeTIEX2EQXq/du1ahO3bt1u2jvss9rgisAgRRkG5YsWKS5curVu3TjZ6eSIw3M8//4wQEBAwZswY3pbIe/fuZc5E0q5du5g5sbVo0SKmd/Xq1ZkzZ0qAfKE2bDZv3szkMaNj9uzZuUrwRHSZMWMGVwx/f3/ojymhwcAgkoBY1UuOIGTrqRItRA6hS5USPWYwnV6TkyZN4mbz66+/EoRU6YsZ3ekCoDZkIpmOlNAlBo5hLA9AcjgF86tQoYJ4HfAAEp4HthPeAG3btpV88+ZNT0/P3377DZnlk/KFDPdPwDmXU8AmBQcHo4F34sWLx8uqbt265Ooymzp1KuuQNWvWSpUqabZK0XPmzAk1zJo1S/+r0Pnz5+mCPkeOHFTbtWuHW7qgad26Ne89aBFNt27dUqRIwS3Y19eXKh5u3LgBn2IWP358qrBY3rx5WfPjx4+LFhn666+/TpQoEXKZMmXwOWTIkNGjR3NlwBhmJEBJ0A4fPoyAWePGjTt06MATbdiwgXcyr2IegWmvX78+SZIkcOWoUaNIGOUN/fXr1/UpIWBNAOsPJDuW4GVCo2jHEeyzwVRlYE9GVRuhNQZhhGPFrZ9x2YDIAGeBGECwNYQo9uhJ006dOnXt2jU6UlUraYEMKMkBKUPslDXO022TusiP7a1evXqcKRkATsrcuXOdleeDOxMce8mWQARAI5LRcLQGDx4MPZHsyAzAd+hhExiBtxkapkqOxpbDKePHjy9UqJDseRws16xZAw3JkhcaxqRRmTJl2rRpk7e3N9lTypQptWFXrlyhBNiIUkmp+vbtW7NmTVItqsOGDcNhv379kEnBkI8ePcoGe3h4zJ8/X3+JcOTIkRJgUgwWLlzIfiF/++23Xbt27dWrF5MkNA8dOpQtWzbNkFyVadBEL4WmQlYLTvlSV94VGkvrj2AI7hVASyou4xpBqQCQHv6C4DgUeuE5+zw6lWjQQ20Y2L2klCxjgFJw1sMGdZFPlShfHsG58xVV9zvnc1rniiQLziUp27hxI2kUGZAsScKbNGlSvnx58RGaGDFiJE6cmKsiVa6cuPrmm2/Qc6lkJ8qWLQuh4ByN/tZziRIlaIJf0qdPz0WSK6R+PpAgQQJKwKUglvWfgRM0EydOvHDhAlkbVfzg8KuvvkKGK6GkjBkzwoZbt26tWLGirsykhPpBGHEJsWJPjOKwcuXK5KTTp09nkmSmaAgXkkdoGuLjQl21alV68ezoEeBBSgm2bOB+YMe16VwqCSrCmFhlx1HSqg9AeNEiK9qJScKVEjOIDA2xhBl9gQ4RRwDIPgLBnQkOaD9Uctfr2LEjadTOnTv37NlDEvfZZ59ZVo6fosIpCOyrvtNIF0DeHi1aNB8fn9WrV4uqUOov3NNFpEOgoCEs4K9FixaRXi1btmzo0KEyE4gzXIllIFNSLS6nefLkoYpDhrCsHAQHqyIQi7zEsCdtpMqsSPcQsJRbnCBzlSZfO3LkiMyISN6xyZMnh8G7d+/epUsXZXz4IUZpxY/htcgDtls/aELWD8EQLOpz/JiLEsKiRIkN4YSsnI5okR4QMDJGFsdJD2gSnPXwCQ6Yu15R9UEDzEKyTbV27do8b7ly5dRK5kV17Nixe/fu1SaRvpGCJUqUiMspmlKlSsGJLVu2rFWrVunSpbnY7tu3T5bXr18vVqwYQaO7bZUqVSBBhMKFCzdu3Lhz586KKv1fbQId06ZNy3sShyw4OSAOGUhhR3euvQgsEdPmfpozZ07uqsQTxmnSpKGpVatWcgs/0orDBg0akHjqc0CyNn3uJiqEu8nvFixYwNBaBGJXM3nFYIuBdhzBPjnmihquwGrrQiogi+xe+C7Ip3bc3veXd0V9s0ePHjNmzOB5OJmKPJ3h54SccLmDR7j6IbNqw4YNa9iwIUkKA9ujvJDhHgutIGAIqOH48eNwBxfA999/39/fn0sit1RxBwaZMmXKmjVrrly5bt++zX0zWbJk0CIMAhOxPrAMTH3w4EGeolChQhhnz56dRSN9g2tSpUpVsGBBZN4TLOMvv/ySJUsWBqLMnDkz02AIWkm7atSoARuuW7eORfj+++9PnDjBJRRLYMXV/QIFCuAZKmTCWHp5eV29epXhSPeYmNwybWxgitGjR6PkuRgXZiR3y507N5ZMCbJu2rQpQaMVADi0yeW1QBvds2dPdh8BEtefslCVVhm4IrTG4OWBQNUuAEJFAnqVLxy2c8CbmFuO0gUwcOBAXtv6CstzwvGdezf+bwM52IzFu4i85qUO9E+AUpkAaZoytVcM2FPXCkandGpfLcRflOw4JddwMT4ZnPlvA8MPWG3grDyC1v/F7oJGocStSmD+28BnBIdKJ/yu9XvmaKA8EiWqAQEBQUFBnC6YF9DK/ZFW8jKBJpRY0oudEFUhI7AZlNhgoBIzIA8aBSVmDA25IMsbxjQBLNFQxQ/zoUmCxrVHpIosyCF91Usaqmq1vDqHVklrtGjR9OELc3N1ZWAQAiIaVzgbIjjcmeD0ruCoa8NEMWg48OQR3Blpgtq4u2EJ2WFDrgewwZi7ITQERYoQaRVriDRxgo3YBA0OcQKQMYaAaIKP5I2+aqKkKg1NkA426EVqaCRQIjMuTrCxHDs66kdajE4XWikZCA9iOkqqcqt54kegI70cAxsY/AOISVc4tREc7kxwzsNtfYpJIsMhR8nOUeX8o9HHUvrRZEzr/9GANbCHIKCJRIkSoUepzRaz0EoVpTiO7lgqn0Kpn2Yi0ISBh4cHBmiQ6UVfqtLIA/YMgcBM8G/xmGNuGGCMUgJDADrqEbCk1Kywp0l9McAYmSYNhwe1ajjsBYydkiWrGlowMIjocGeC42BzvO1DK+KAvEQ0JD5Qm6en58WLF2/cuIEBFADrQTrwAuAOSwan3E0EYR97BNkrBYPOUF65cgV7jFFev36dIdCrC9NgdOaDEg1VzOgOn166dImSKmZoAA7xgEY2olHmrKwQM+VxaJA1WwRs0DNPSg1NyUB4kAH2DM00GI4hVMWPnlEGWi5A1SCSQzEZ0eHOBMfZ5tByhjmxHGxkiAM9x5gzr2xrzJgxOXLkiBs3bseOHamiP3HiBCV9s2bNmjBhQg6/yAInuII+EPAAL4jO9FWjs2fPZrCAk/nz5+NNjEZfxkWJLJ5CTy+qKH/55ZdkyZK1adMGWb/xh4BDzCSrFwLjQr6aA6NTFf2dPHmSGTIB0ZlkBEahlapG17NTAi7jNNEdb5AdDvGGPWayREOTqgaRFkSI4KxHTLh5BkcpXkCghDuokrhZ7VHmzJkzduzYo0ePlipV6ubNm1JWq1Zt1apVUMDw4cNJmrTBlJx8iAC96I9cCeXt27dRYpAuXbrvv/+eJA7Z29v7hx9+YCDYTZaQF8ASDVU8IGBZunTpYsWK6ff28YZec8aS4agyVfQ4Qa+h0ag7frD86KOPdu7cCbvZrVAVTWqNFSsW02CStCJoMl5eXnTHLb00Mbrcsr4op2cR6yEYGER0uDPBiUR0VjnYsNvWrVtnz569Y8cOpUXTp08/ePAgt9T169ePHj0aDdUjR47MmjULuVy5cqlTp4bjTp06RRUi4NI6c+ZMWIzuAL5IlCgRo8ybNw+SqlChgoeHB8Z4gEwp9YdGaGJQBA26efNm/OtLOcwKjoNrkHGLmWgOriHhkv3ChQt3796NkmQNhxAxjEwWRtMuC/qDhWDRokW//vor84GtFi9ejA2Cvl+9bds2jejj46OZI0+bNm3fvn3YA2yU97FcVMV0BgYRHhxFd/1NBsAhD7Z+jQGsWbOG2yg5Tvbs2aEMPz8/WIMVGDJkiAyAflMdKuRyB0h2GjRoUKlSJexp7datW8qUKb/88kuehSocRLlkyZIkSZLAUyRTCFAMDEIXLqq4qly5cp06dWLHjj1y5EgYZN26dfrTvvny5cOS7h06dKhZsybCp59+SlP//v1JoLBkZRCGDRuWM2dOnDBb7HGYLVu2Jk2afPXVVxg0b94cTapUqWBhhsudO/eHH34ID5LTQZRZsmRp1KhR69at8aZvcZNaFi9efMaMGdgPHjyYrLNWrVrQpZ6Fh2Kt9JHcC9wXXAHtOIJYG5jfZIiccESDFQ92idL8NZFnAQdbQOZIk23pV5eWLl1KkoLQr1+/hAkTOkytPwEogUnqrw+Rr3EOeQSusfAXDJU8eXJ4hDTNfqhr165hTxoFQegGivKbb76BQxH0TUUyLOR48eJ9/fXXGTJkIJOiykw0dJcuXWCfrl27Zs2alU2FmCZMmIAeQD1kkePHj2eDoGY0sK0cFipUCLZFg1sSNwSSQZj6/fff1y+KtGrVCkv6wsg4R6PckKnSFw/MDabjuSBQtoPH5xGgNgR7d14I2GIgnwiG4CI5HNHwCgnOGW1uCY40y8ehReZckZ7o5kU+BeshsI72ebMvZXQhw0Ig+4PRtmzZAmXQmiBBgvPnz48YMQKSKlu2rG2MKxxCbVxU9fdCMJA3/Pfo0QN6QkZDK/ShvxANS+pzfTqqO3QGsZLZFS5cGD1Inz59yZIl2Wlu0PqzIsmSJYPCcAgZERwyQ0mJhhv3hQsXmjZtSjVq1KhMEpmMVSsAoSxbtgz/Z86cwTPEjf2mTZuwZBF4EIDA7ZV1IzIcrg0MIjjcmeA4rrAPJx+Z00sZJ04cSuV0CBAZzILgCnhHH1FFf/T/zlBCT/Aj+c6GDRsmTpyouy2QK3nLmDGjeBMPNl2SVWkCt2/fvnjxIrdOMj6qeBBDxY0bF/90+eyzz7jtDhw40O7LnZQb6+rVq1etWgVXooGq9EdN8KNnYf4MCv1BZHv27Nm/f3+uXLnQ8wgaiFb9vBgNfI1AR1ibgVasWDF58mStADb2uExYy2VgEOHB4XTjz+BgJaDhuCFWqlTp008/rVKlSseOHa9cuZIqVSpWgFsnrVAGJfMhfyEFI31r2LAhrT179uQqh7JmzZrcED///HMeauHChRjDHTjnQorbFi1aFChQAHsE/Z0SMjJ99cTb21t/JJ10qXPnzjVq1Pjoo4+qVq06YMAAf39/7pg4b968OVn6J598UqJECW6ROAfMkBFbt27NhRc/HTp0EPOeOnUKjX7oAUczW6bRpk0bujMTKJWLszLTEydOZMmSBe5r164dVS68JKEMx3Y3atQIh+JNPQ5N+i8duM7bxP38YEmBtgDBTpnNFTVywhEN5or6YsE6Uvbq1StnzpyHDh3izEMu5CmlSpWqVauWroocaTQc/u+++65QoUJXr17lBNapU4cDmTt3bugAy/bt20NbUDabQRfs4Q7cpkuX7uTJk1mzZiULQ1mxYsXatWtDOshcUevXrw+5jxkzpnjx4t9++y1pFM6ZA/RH5gVd8oKBPWFAGK13797cIpkwLEOyNmzYMPrmyJGjWbNmN27cwBXT8PPz69KlC2wFwZHiMVumLV6jL9M7fvw4ZgQNN1YeB9aDvGDVbNmyYQnZMWLfvn1p5cLL0GSXPA6pHAEB0SOISQ0MIjocn7a48V8TgUEYwsPDg8sdA5H1OBv+DuYDzWEZ1fpjamEBBIRD6ECfuz0WJF+8i7p27aoqk+GpdWEUcBJ6RGiRUqQMgVq6kAixbuSb3Hl1cWYU0rqnZShWgJJFENHjQd6eH0xVJc9OyUVYY/H+MH9NJBLCjgc2VyUwf03kWQBHQB8cVHiE08VBunjxotaX1eQwwwUItNr3U3iQkiYog+5c2UigsKcKQcsn9lAAZnABBGRX6atWcdPevXtHjRpFRubr60sV/1ChPsvDv+1HTQhA86GVLRfx4fOO9Tf1MaaJUeiIgAFKWjHGDDqTK+YpQWb23NDgnEdA1pMCbFRFwA9glUjfENDTxcAgosPNr6icXghOnyhBLnHixOHMAw4wSngBpuB4Y8nZRqYUxaBBz5uEA48GS7I/yIJe4kocokSgROnv7y9XyFAP3c+cOVOwYEEuxfqeMIPiFgJiGvRFptQPMTQZ0QoCI+JBA4l6NDH5p2pPEoES2ZG8/fe/cDGT8fT01DRoxRXAhtExYCwGZRQ0AAGfKAV5o6N+7uHUGhhEZLgzwXHaObGwEseVc06V80wVgcwLErGPN6SDXikYRCB7BM48JfYyA2IisYaYgi6YCTJQ8lWjRg0fH5/t27eXL1/eHku/Gw+wYRToxqYqOnIxRM80qOKcVgaKHTs206OLrqs0odRTiIb0jNgzEyzFbgwnnxiIyLDHOQzLZACtgI4CvTCjOz41NB0NDCI63JngOKicasBJVuZCKVpBJiPjwMMO9mkXX4gLOPDlypX74IMP0KOhC0r72NNKXzrKGG9cP5ER4Ai6YCNjLLljQjSY0USvs2fPli1btlmzZphRxQwbZDwgY0PZvn373bt306op/fbbb2SCvXr1gtrkVp+RQY5osIGhGB0GFKNpzpoDD4hPoIdihrTSi1b1AjQBNOgxQFB3A4OIDje/otpHl8PMUYcygI40BMFRhwJIkajCd7AGGow55JBF8uTJFyxYcO7cOSxppQkqUXJk+Y7i5eVFF3EHJRosydFWrFgBGWGGH5qUl2kC2KRMmZLqjz/+GGh9d1fd6Sh7NMyHu23atGkh0C5duqDJkSPH5cuXBw0ahMwcNH9kZoXAI3AtRY9bpk2JNwelPfrrSdhozlRxTitmKAGyK7ABdLGf0cAgQsOdCY6EhcMPJQUEBMAdUA+UcePGDfIU2OrmzZv37t2DGkRq+mAOdqBVLDZkyBDISD8khZ7oi4A9TaID/VYTHSEOWnW1xGblypVjx45FoIrBrVu3oBLlXBij79+/PwOJzrBBRrhy5Qp+5KFhw4aJEiXau3fvsGHDTp06RceuXbvq/zOkFzYAnzwCAmyluSHrJxLK8qgyVYfpI9BFGrXiFkFAL/D4lE6tgUEEhzsTHOcZOuC0Qxzw1MWLF4tbgGVOnz6dOnXqr776asaMGT/88MOUKVMglJ9//ple5Fk64deuXYOz6HjkyJGMGTMmSJBA/wsUhELZsWNHMjjAlRP6K1CgQM2aNdHv379/1KhRFy5cGDx4MNW+ffumS5du6dKlyKRsuXPnrlKlypYtWyAXEiWUui1inC1btsWLFyNjwGQOHz7cvXt3JlCvXj2U3EZ5CjhXOR1o164dj3DgwAEeMEOGDPnz51+2bBnMqB81yMbAIJLDnQmOk69shbQLDvrss8/0Nz9gkFSpUrVq1Wr48OGzZs06fvz4zJkzJ02a1LlzZ4iGLvoki+SLtIt0rGnTpiRQy5cvhxb1ZznwAP0tWbIE3tm4cSM+P/7443z58pUsWTJnzpwNGjTgJvjFF1+Qqf32229jxoyBSRctWtSkSZPPP/+ccVu0aHH79m37C3GdOnWaMGHC1KlTv/nmG0qmcf36dagNMybTo0cPbJIkSQLlwZ7kg+PGjWvZsiV8jfDBBx/s2LGDC+/u3bvr1q2LXr/DL88GBpEc7kxw1pXLeSMjY4KGyMUgnV9++QV9+fLl4S9yqzhx4qxZs2bkyJF+fn4kd6Q/urshxI0b99KlS/SCm4oWLQpR7tu3jyY4hQtjhQoVoBuSpvfff3/9+vVkgvrvn6G5TJky4eTgwYMLFy5kxBMnTpCvQXbvvfce4/bs2RMzOJcSnDlz5ujRo5hBYZgVLlw4efLk0aNHxz8CJTbcPXFIpskccOvr6ztnzhzmTF8PDw98UpKBlipVCmNdfg0MDNyZ4AC5mNIx2KRfv37NmjWDg3LkyIEGLtPvpUNhBQsWhKGgOf09Iv3qUlTrT+CSi+kWCeiie6VKQBO3UfI7uIZkEPZBSXflUOR3tWvX3rVr186dO7nDBgQEiNRICbn5ikbB1atXmRKZ4Pbt22vUqIGG2yijk0LKAMBfXG8RUNKXezT52ubNm7nVZs2alYlBuOSVGNx3+fqLgUEkh5tncBAQGRykQFLDFZJL5ejRo7notW3blpsgZIemevXqadKk6dWrFxfVs2fP0lE/WODCSKY2e/ZscqjWFriW6m9MctP8/fffSQlRcp3MkycPV8u5c+ci4xD2oSN3Ri7FTKB79+7Tp0/nykka2Lt3b9iwTp06pH6jRo1yzDJKlE8//TRx4sSYMRZ0OXHiRBI6Rj916hTz+e67727cuNGtWzd8osfPoEGDkiZNyiRR8ggknh06dOD6zP1UP4KQWwMDAzcnOE47JceedGncuHFXrlzhTpo3b97Vq1ejz5w584YNGypXrkw2BGuQPRUpUkQcAaecO3cOHkmRIgWsBI/89NNPlSpV0mdwsA831nXr1rVq1YrUbN68eeRfZGokUyRrxYsXT5YsGRdhmJEkEUotUaJEypQpBw4cCD3NmDGD+2b69Om5kJJtBQUFeXt7N2rUaPDgwVxg06VLx00WvoMruaWSlB07dmzv3r3co5MkSYLzDz74gClBrBkzZhw+fDgdGevQoUNMFaYLDAyEUpU/UgKRuzQGBpEN7vzL9q4HG9m+aT4BEJB6uf5KvCvgC2DfLknWeJBn/qklY8FxeHtRP/dkPvjkBm3ncdzQca51tpWvEtoCSkanZG7MEI35ZfvICTse2FyVwPyy/bOA5VP+AjhdyNLfu3dPqyzAvAABA9YaSxmTZ2H2h/U/n0IcMoCPoAxKnKChFWgIuUWAJelLKyWeUdKEkl60onfFO9avRjGEWjEGarIFRtfkMWM4BPI+ZKvR0erv76+ZkPfB4zwFeko82NQppYFBpII7Exw8FSIzgiZgAXiEUqQDO2ADKaBB0A8WyDJoghGU/tAqygNQBt0lQDExYsSIZv1PfdLbTERHBFEMrigt2nT+56oC9hhIr7GkRHBwlQVYD6gXfrBkPvAmNsgYIzMoI9KKDfOnCXt6URWp4UdjOZbAwCAywZ0JzqYPZE44B57Dj6xPqahSosEMkrJvnfoJKb0wswlLfbFHSc5FiX1066/L4RkNvAPoSxPe9INODDyt35QQMBDL0AVodNEQ3jRuaNCqXnQX/+KKIfQIVGmKGzeu9LGt38yXJc6Bums4y5+BQSSCm19Rgc62AAVACrdv3+b8L168+PPPP4cOyMKggP79+8MyCxYswAaSgiNIgmwnIjhcYYkBgpjlww8/jBMnTooUKS5cuADN0Yox+lmzZiVIkGDgwIFosKREKScAAQ+qKv/CAEiJBwRgjez8HAqBWQUEBFy9ehV2Yw7oMdZUuQhjzwR27NgBpVarVo0uVOmFnmfEHo2BQWSD+xMcUBUuALADlET13Xff/fTTT9Go9YMPPoBudu7ciQx3wA6QAtTgIJ5Hv5xPX+yRaVWXvHnz9uvX7/z58/q8HH75+OOP1UTfRYsWIdMFD0wDASe4BWhoAlCtNJoJBkDsSRNAL9Bl5MiR3bp1o4kqTQiyJHHTV1vy58+vr9QhczPliRDssQwMIhvc/IoKRAEwAiRC+nPy5MnAwEAOPwSh/6AP+eDBg+nSpStatKjyqUuXLh06dIgLJlxDK9yEgIejFsibZLNu3br48eM3b94cnzALSh8fn9mzZ9OEfYkSJZIkSYJSX91AAwniVjJ65gZjIhw+fBi3d+7cgTdv3ry5f/9+8dexY8f0o4wbN24weQQYc8WKFQg
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.