The requirement to measure the number and severity of head impacts in sports has led to the development of many wearable sensors. The objective of this study was to determine the reliability and accuracy of a wearable head impact sensor: xPatch, X2Biosystems, Inc. The skin-mounted sensor, xPatch, was fixed onto a Hybrid III headform and dropped using an impact test rig. A total of 400 impacts were performed, ranging from 20g to 200g linear acceleration, and impact velocities of 1.2-3.9 m/s. During each impact, the peak linear acceleration, angular velocity and angular acceleration were recorded and compared to the reference calibrated data. Impacts were also recorded using a high-speed video camera. The results show that the linear acceleration recorded by the xPatch during frontal and side impacts had errors of up to 24% when compared to the referenced data. The angular velocity and angular acceleration had substantially larger errors of up to 47.5% and 57%, respectively. The location of the impact had a significant effect on the results: if the impact was to the side of the head, the device on that side may have an error of up to 71%, thus highlighting the importance of device location. All impacts were recorded using two separate xPatches and, in certain cases, the difference in angular velocity between the devices was 43%. In conclusion, the xPatch can be useful for identifying impacts and recording linear accelerations during front and side impacts, but the rotational velocity and acceleration data need to be interpreted with caution.
Research investigating head injury mechanics during practice and competition are underway in sports, such as ice hock-ey1, American football [2,3], soccer [4], boxing [5], and taekwondo[6]. With the different head protective requirements of each of these sports various head impact monitors for helmets and non-helmeted sports have been developed [7,8]. The Head Impact Telemetry (HIT) system (Simbex; Lebenon, USA) developed in 2003, which incorporates a nine-accelerometer array has been mainly in American gridiron football [2,3,8] and ice-hockey [1], but also been modified for use in soccer [4] and boxing [9]. Another head impact measuring device designed for use in helmeted sports the GForceTracker (GFT, Ontario, Canada) can be attached to different helmets [10]. The GFT samples linear accelerations at 3000 Hz and angular velocity at
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.