ObjectiveTo derive a difference equation based on mass conservation and on alveolar tidal volumes for the calculation of Functional Residual Capacity. Derive an equation for the FRC from the difference equation. Furthermore, to derive and validate a step response equation as a solution of the difference equation within the framework of digital signal processing where the FRC is known a priori.MethodsA difference equation for the calculation of Functional Residual Capacity is derived and solved as step response of a first order system. The step response equation calculates endtidal fractions of nitrogen during multiple breath nitrogen clearance. The step response equation contains the eigenvalue defined as the ratio of FRC to the sum of FRC and alveolar tidal ventilation. Agreement of calculated nitrogen fractions with measured fractions is demonstrated with data from a metabolic lung model, measurements from patients in positive pressure ventilation and volunteers breathing spontaneously. Examples of eigenvalue are given and compared between diseased and healthy lungs and between ventilatory settings.ResultsComparison of calculated and measured fractions of endtidal nitrogen demonstrates a high degree of agreement in terms of regression and bias and limits of agreement (precision) in Bland & Altman analysis. Examples illustrate the use of the eigenvalue as a possible discriminator between disease states.ConclusionThe first order step response equation reliably calculates endtidal fractions of nitrogen during washout based on a Functional Residual Capacity. The eigenvalue may be a clinically valuable index alone or in conjunction with other indices in the analysis of respiratory states and may aid in the setting of the ventilator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.