The Laser Ranging Interferometer (LRI) instrument on the Gravity Recovery and Climate Experiment (GRACE) Follow-On mission has provided the first laser interferometeric range measurements between remote spacecraft, separated by approximately 220 km. Autonomous controls that lock the laser frequency to a cavity reference and establish the 5 degree of freedom two-way laser link between remote spacecraft succeeded on the first attempt. Active beam pointing based on differential wavefront sensing compensates spacecraft attitude fluctuations. The LRI has operated continuously without breaks in phase tracking for more than 50 days, and has shown biased range measurements similar to the primary ranging instrument based on microwaves, but with much less noise at a level of 1 nm/ √ Hz at Fourier frequencies above 100 mHz.
We report airborne measurements of CO(2) column abundance conducted during two 2009 campaigns using a 2.05 μm laser absorption spectrometer. The two flight campaigns took place in the California Mojave desert and in Oklahoma. The integrated path differential absorption (IPDA) method is used for the CO(2) column mixing ratio retrievals. This instrument and the data analysis methodology provide insight into the capabilities of the IPDA method for both airborne measurements and future global-scale CO(2) measurements from low Earth orbit pertinent to the NASA Active Sensing of CO(2) Emissions over Nights, Days, and Seasons mission. The use of a favorable absorption line in the CO(2) 2 μm band allows the on-line frequency to be displaced two (surface pressure) half-widths from line center, providing high sensitivity to the lower tropospheric CO(2). The measurement repeatability and measurement precision are in good agreement with predicted estimates. We also report comparisons with airborne in situ measurements conducted during the Oklahoma campaign.
This paper provides atmospheric CO 2 column abundance measurement results from a summer 2011 series of flights of a 2.05-mm laser absorption spectrometer on the NASA DC-8 research aircraft. The integrated path differential absorption (IPDA) method is used for the CO 2 column mole fraction retrievals. This instrument and the data analysis methodology developed to achieve retrievals over complex terrain and variable atmospheric conditions provide insight into the capabilities of the IPDA method for both airborne measurements and future global-scale CO 2 measurements from low-Earth orbit pertinent to the proposed NASA Active Sensing of CO 2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. Demonstrated in this paper is the capability to measure CO 2 drawdown caused by crop activity during a midday flight over the U.S. upper Midwest area. In addition, an example is provided of high spatial resolution measurements of CO 2 plumes from individual stack clusters of the Four Corners Power Plant in northwestern New Mexico. Complex terrain, the spectral properties of the aboveground scatterers, and potential cloud contamination are factors that complicate the column abundance retrieval. The impacts of these factors and various means of minimizing these influences in the retrievals are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.