Abstract-The metabolism of high-density lipoproteins (HDL), which are inversely related to risk of atherosclerotic cardiovascular disease, involves a complex interplay of factors regulating HDL synthesis, intravascular remodeling, and catabolism. The individual lipid and apolipoprotein components of HDL are mostly assembled after secretion, are frequently exchanged with or transferred to other lipoproteins, are actively remodeled within the plasma compartment, and are often cleared separately from one another. HDL is believed to play a key role in the process of reverse cholesterol transport (RCT), in which it promotes the efflux of excess cholesterol from peripheral tissues and returns it to the liver for biliary excretion. This review will emphasize 3 major evolving themes regarding HDL metabolism and RCT. The first theme is that HDL is a universal plasma acceptor lipoprotein for cholesterol efflux from not only peripheral tissues but also hepatocytes, which are a major source of cholesterol efflux to HDL. Furthermore, although efflux of cholesterol from macrophages represents only a tiny fraction of overall cellular cholesterol efflux, it is the most important with regard to atherosclerosis, suggesting that it be specifically termed macrophage RCT. The second theme is the critical role that intravascular remodeling of HDL by lipid transfer factors, lipases, cell surface receptors, and non-HDL lipoproteins play in determining the ultimate metabolic fate of HDL and plasma HDL-c concentrations. The third theme is the growing appreciation that insulin resistance underlies the majority of cases of low HDL-c in humans and the mechanisms by which insulin resistance influences HDL metabolism. Progress in our understanding of HDL metabolism and macrophage reverse cholesterol transport will increase the likelihood of developing novel therapies to raise plasma HDL concentrations and promote macrophage RCT and in proving that these new therapeutic interventions prevent or cause regression of atherosclerosis in humans. Key Words: high density lipoprotein Ⅲ insulin resistance Ⅲ lipase Ⅲ lipoprotein Ⅲ reverse cholesterol transport P opulation studies have shown a highly consistent, inverse correlation between plasma concentrations of highdensity lipoprotein cholesterol (HDL-c) and its major protein apolipoprotein A-I (apoA-I) and atherosclerotic cardiovascular disease risk in humans. 1 HDL-c and apoA-I concentrations could simply be integrative markers of other atherosclerotic cardiovascular risk factors and not themselves causal in the disease process. However, studies in animals strongly suggest Dr Gary Lewis has acted as a consultant to the following pharmaceutical companies that are involved in the lipid-lowering and diabetes therapeutics fields: Pfizer, Merck Frosst, Astra Zeneca, Eli Lilly, Fournier Pharma, Bristol Myers Squibb.Correspondence that HDL and apoA-I have direct antiatherogenic properties. HDL metabolism is somewhat more complex than that of the other major lipoprotein fractions, in that the individual lip...
The primary genetic, environmental, and metabolic factors responsible for causing insulin resistance and pancreatic beta-cell failure and the precise sequence of events leading to the development of type 2 diabetes are not yet fully understood. Abnormalities of triglyceride storage and lipolysis in insulin-sensitive tissues are an early manifestation of conditions characterized by insulin resistance and are detectable before the development of postprandial or fasting hyperglycemia. Increased free fatty acid (FFA) flux from adipose tissue to nonadipose tissue, resulting from abnormalities of fat metabolism, participates in and amplifies many of the fundamental metabolic derangements that are characteristic of the insulin resistance syndrome and type 2 diabetes. It is also likely to play an important role in the progression from normal glucose tolerance to fasting hyperglycemia and conversion to frank type 2 diabetes in insulin resistant individuals. Adverse metabolic consequences of increased FFA flux, to be discussed in this review, are extremely wide ranging and include, but are not limited to: 1) dyslipidemia and hepatic steatosis, 2) impaired glucose metabolism and insulin sensitivity in muscle and liver, 3) diminished insulin clearance, aggravating peripheral tissue hyperinsulinemia, and 4) impaired pancreatic beta-cell function. The precise biochemical mechanisms whereby fatty acids and cytosolic triglycerides exert their effects remain poorly understood. Recent studies, however, suggest that the sequence of events may be the following: in states of positive net energy balance, triglyceride accumulation in "fat-buffering" adipose tissue is limited by the development of adipose tissue insulin resistance. This results in diversion of energy substrates to nonadipose tissue, which in turn leads to a complex array of metabolic abnormalities characteristic of insulin-resistant states and type 2 diabetes. Recent evidence suggests that some of the biochemical mechanisms whereby glucose and fat exert adverse effects in insulin-sensitive and insulin-producing tissues are shared, thus implicating a diabetogenic role for energy excess as a whole. Although there is now evidence that weight loss through reduction of caloric intake and increase in physical activity can prevent the development of diabetes, it remains an open question as to whether specific modulation of fat metabolism will result in improvement in some or all of the above metabolic derangements or will prevent progression from insulin resistance syndrome to type 2 diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.