The expression of the insulin-like growth factor 2 (Igf2) and H19 genes is imprinted. Although these neighbouring genes share an enhancer, H19 is expressed only from the maternal allele, and Igf2 only from the paternally inherited allele. A region of paternal-specific methylation upstream of H19 appears to be the site of an epigenetic mark that is required for the imprinting of these genes. A deletion within this region results in loss of imprinting of both H19 and Igf2 (ref. 5). Here we show that this methylated region contains an element that blocks enhancer activity. The activity of this element is dependent upon the vertebrate enhancer-blocking protein CTCF. Methylation of CpGs within the CTCF-binding sites eliminates binding of CTCF in vitro, and deletion of these sites results in loss of enhancer-blocking activity in vivo, thereby allowing gene expression. This CTCF-dependent enhancer-blocking element acts as an insulator. We suggest that it controls imprinting of Igf2. The activity of this insulator is restricted to the maternal allele by specific DNA methylation of the paternal allele. Our results reveal that DNA methylation can control gene expression by modulating enhancer access to the gene promoter through regulation of an enhancer boundary.
An insulator is a DNA sequence that can act as a barrier to the influences of neighboring cis-acting elements, preventing gene activation, for example, when located between an enhancer and a promoter. We have identified a 42 bp fragment of the chicken beta-globin insulator that is both necessary and sufficient for enhancer blocking activity in human cells. We show that this sequence is the binding site for CTCF, a previously identified eleven-zinc finger DNA-binding protein that is highly conserved in vertebrates. CTCF sites are present in all of the vertebrate enhancer-blocking elements we have examined. We suggest that directional enhancer blocking by CTCF is a conserved component of gene regulation in vertebrates.
development in the sea urchin have delineated a regulatory network that has significant predictive power 16 (Fig. 2). Finally, systems approaches to metabolism in an archaeal halobacterium (an organism thriving in up to five-molar salt solutions, such as the Dead Sea) have revealed new insights into the inter-relationships among several modules controlling energy production in the cell 18 .The study of cellular and organismal biology using the systems approach is at its very beginning. It will require integrated teams of scientists from across disciplines -biologists, chemists, computer scientists, engineers, mathematicians and physicists. New methods for acquiring and analysing high-throughput biological data are needed. A powerful computational infrastructure must be leveraged to generate more effective approaches to the capture, storage, analysis, integration, graphical display and mathematic formulation of biological complexity. New technologies must be integrated with each other. Finally, hypothesis-driven and discovery science must be integrated. In short, both new science and technology must emerge for the systems biology approach to realize its promise. A cultural shift in the biological sciences is needed, and the education and training of the next generation of biologists will require significant reform.Gordon Moore, the founder of Intel, predicted that the number of transistors that could be placed on a computer chip would double every 18 months. It has for more than 30 years. This exponential growth has been a driver for the explosive growth of information technology. Likewise, the amount of DNA sequence information available to the scientific community is following a similar, perhaps even steeper, exponential increase. The critical issue is how sequence information can be converted into knowledge of the organism and how biology will change as a result. We believe that a systems approach to biology is the key. It is clear, however, that this approach poses significant challenges, both scientific and cultural 19 . The discovery of DNA structure started us on this journey, the end of which will be the grand unification of the biological sciences in the emerging, information-based view of biology.s s
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.